Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States.
Anal Chem. 2021 Mar 2;93(8):4015-4022. doi: 10.1021/acs.analchem.0c05023. Epub 2021 Feb 15.
Life was originally assumed to utilize the l-amino acids only. Since 1980s, the d-amino acid-containing peptides (DAACPs) were detected in animals, often at extremely low levels with tremendous functional specificity. As the unguided proteomic algorithms based on peptide masses are oblivious to DAACPs, many more are believed to be hidden in organisms and novel methods to tackle DAACPs are sought. Linear ion mobility spectrometry (IMS) can distinguish and characterize the d/l-epimers but is restricted by poor orthogonality to MS as in other contexts. We now bring to this area the newer technique of differential IMS (FAIMS). The orthogonality of MS to high-resolution FAIMS exceeded that to linear IMS by 6×, the greatest factor found for biomolecules so far. Hence, FAIMS has achieved the 2.5× resolution of trapped IMS on average despite a lower resolving power, fully separating all 18 pairs of representative epimer species with masses of ∼400-5,000 Da and charge states of 1-6. A constant isomer resolution over these ranges allows projecting success for yet larger DAACPs.
生命最初被认为只利用 l-氨基酸。自 20 世纪 80 年代以来,含有 d-氨基酸的肽 (DAACPs) 在动物中被检测到,通常含量极低,但具有巨大的功能特异性。由于基于肽质量的无指导蛋白质组学算法忽略了 DAACPs,人们认为更多的 DAACPs隐藏在生物体中,因此正在寻找新的方法来解决 DAACPs 问题。线性离子淌度谱 (IMS) 可以区分和表征 d/l-差向异构体,但与其他情况下的 MS 一样,正交性较差。现在,我们将新的差分 IMS (FAIMS) 技术引入该领域。与线性 IMS 相比,MS 对高分辨率 FAIMS 的正交性提高了 6 倍,这是迄今为止生物分子中发现的最大因素。因此,尽管分辨率较低,FAIMS 平均实现了 2.5 倍的捕获 IMS 分辨率,完全分离了质量约为 400-5000 Da 和电荷态为 1-6 的 18 对代表性差向异构体。在这些范围内,恒定的异构体分辨率允许预测更大的 DAACPs 的成功。