文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

巴基斯坦开伯尔-普赫图赫瓦省上迪尔和下迪尔地区皮肤利什曼病的时空模式:基于 GIS 的空间方法。

Spatiotemporal patterns of cutaneous leishmaniasis in the district upper and lower Dir, Khyber Pakhtunkhwa, Pakistan: A GIS-based spatial approaches.

机构信息

Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Zoology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Pakistan.

Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.

出版信息

Acta Trop. 2021 May;217:105861. doi: 10.1016/j.actatropica.2021.105861. Epub 2021 Feb 12.


DOI:10.1016/j.actatropica.2021.105861
PMID:33587943
Abstract

While Cutaneous leishmaniasis (CL) is not a life-threatening disease, it leads to devastating effects on local community. CL is widely scattered manifesting a noticeable epidemiological pattern around the globe. The present study was planned to address the role of Geographic Information System (GIS) using CL clinico-epidemiological data to determine the high-risk areas of CL. Recorded data (2014-2018) of 3630 positive individuals was collected from Basic Health Units of the Upper and Lower Dir Districts, Khyber Pakhtunkhwa, Pakistan. Descriptive and statistical analysis was used for clinico-epidemiological characterization. For spatial analysis, ArcGIS V.10.3 was used and the CL average incidence was tagged on the proportional, choropleth, and digital elevation model maps. For focal transmission and high-risk zones, Inverse Density Weight (IDW) spatial interpolation, focal statistics, hot spot, cluster and outlier, and Bayesian geostatistical analysis were used. The trend of CL cases was elevated from 2014 to 2016 except for 2017 and 2018. Individuals of both genders younger than 20 years old were highly susceptible. Single lesions were more prominent (56%) and frequently affected facial parts (51%). The size and pretreatment duration of the CL lesion was significantly associated. Spatially, a choropleth map displayed the maximum CL incidences in Tehsil Balambat, Khal, and Termergara (31%-13%) located within a range of 948-1947m elevation in the central regions with proximal CL transmissions. Hot spot and cluster and outlier analysis affirmed that Tehsil Khal was the high-risk CL foci. The Bayesian geostatistical analysis revealed high temperature, less altitude, and annual precipitation as important risk factors. An increasing trend in CL transmission has become evident, affecting both genders and <20 years old children. GIS resolute the concealed CL hubs in the least elevated central regions which warrant the control strategies to restrict future epidemics.

摘要

虽然皮肤利什曼病(CL)不是一种危及生命的疾病,但它会对当地社区造成毁灭性的影响。CL 广泛分布,在全球范围内呈现出明显的流行病学模式。本研究旨在利用 CL 临床流行病学数据,通过地理信息系统(GIS)确定 CL 的高风险区域。从巴基斯坦开伯尔-普赫图赫瓦省上下迪尔地区的基本保健单位收集了 2014 年至 2018 年 3630 名阳性个体的记录数据。对记录数据进行描述性和统计分析,以进行临床流行病学特征描述。为了进行空间分析,使用了 ArcGIS V.10.3,并在比例、专题和数字高程模型地图上标记了 CL 的平均发病率。为了确定焦点传播和高风险区域,使用了反向密度权重(IDW)空间插值、焦点统计、热点、聚类和异常值以及贝叶斯地质统计分析。除 2017 年和 2018 年外,2014 年至 2016 年期间 CL 病例的趋势呈上升趋势。20 岁以下的男女均易感染。单一病变更为突出(56%),常累及面部(51%)。CL 病变的大小和预处理持续时间存在显著相关性。从空间上看,专题地图显示 Tehsil Balambat、Khal 和 Termergara(31%-13%)的 CL 发病率最高,位于海拔 948-1947m 的中心区域,有近端 CL 传播。热点和聚类及异常值分析证实,Tehsil Khal 是 CL 的高风险焦点。贝叶斯地质统计分析显示,高温、低海拔和年降水量是重要的风险因素。CL 传播的上升趋势已经明显,影响到男女和<20 岁的儿童。GIS 确定了海拔较低的中心区域中隐藏的 CL 中心,这需要采取控制策略来限制未来的疫情。

相似文献

[1]
Spatiotemporal patterns of cutaneous leishmaniasis in the district upper and lower Dir, Khyber Pakhtunkhwa, Pakistan: A GIS-based spatial approaches.

Acta Trop. 2021-5

[2]
Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan.

Trop Med Infect Dis. 2023-2-20

[3]
Cutaneous leishmaniasis in male schoolchildren in the upper and lower Dir districts of Khyber Pakhtunkhwa, and a review of previous record in Pakistan.

Acta Trop. 2020-6-10

[4]
Epidemiology of cutaneous leishmaniasis in children of Khyber Pakhtunkhwa, Pakistan.

Trop Med Int Health. 2024-7

[5]
Assessing Incidence Patterns and Risk Factors for Cutaneous Leishmaniasis in Peshawar Region, Khyber Pakhtunkhwa, Pakistan.

J Parasitol. 2016-10

[6]
Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan.

Acta Trop. 2017-8

[7]
Cutaneous leishmaniasis prevalence and morbidity based on environmental factors in Ilam, Iran: Spatial analysis and land use regression models.

Acta Trop. 2016-11

[8]
Risk Mapping and Situational Analysis of Cutaneous Leishmaniasis in an Endemic Area of Central Iran: A GIS-Based Survey.

PLoS One. 2016-8-30

[9]
Spatial modeling of cutaneous leishmaniasis in Iran from 1983 to 2013.

Acta Trop. 2017-2

[10]
Environmental risk modelling and potential sand fly vectors of cutaneous leishmaniasis in Chitral district: a leishmanial focal point of mount Tirich Mir, Pakistan.

Trop Med Int Health. 2017-9

引用本文的文献

[1]
Co-endemicity of schistosomiasis and tegumentary leishmaniasis: Spatial co-clustering in endemic areas.

Trop Med Int Health. 2025-6

[2]
Epidemiology and future risk estimates of cutaneous leishmaniasis in district Dera Ismail Khan, Pakistan: analysis of data from 2019-2022.

Afr Health Sci. 2024-12

[3]
Spatiotemporal clusters of acute respiratory infections associated with socioeconomic, meteorological, and air pollution factors in South Punjab, Pakistan.

BMC Public Health. 2025-2-5

[4]
Distribution and Risk of Cutaneous Leishmaniasis in Khyber Pakhtunkhwa, Pakistan.

Trop Med Infect Dis. 2023-2-20

[5]
Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey.

Int J Environ Res Public Health. 2022-7-22

[6]
Knowledge, attitude, and practices towards cutaneous leishmaniasis in referral cases with cutaneous lesions: A cross-sectional survey in remote districts of southern Khyber Pakhtunkhwa, Pakistan.

PLoS One. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索