Alvarez Pablo, Rouzé Simon, Miga Michael I, Payan Yohan, Dillenseger Jean-Louis, Chabanas Matthieu
Univ. Rennes 1, Inserm, LTSI - UMR 1099, Rennes F-35000, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble F-38000, France.
Univ. Rennes 1, Inserm, LTSI - UMR 1099, Rennes F-35000, France; CHU Rennes, Department of Cardio-Thoracic and Vascular Surgery, Rennes F-35000, France.
Med Image Anal. 2021 Apr;69:101983. doi: 10.1016/j.media.2021.101983. Epub 2021 Jan 30.
The resection of small, low-dense or deep lung nodules during video-assisted thoracoscopic surgery (VATS) is surgically challenging. Nodule localization methods in clinical practice typically rely on the preoperative placement of markers, which may lead to clinical complications. We propose a markerless lung nodule localization framework for VATS based on a hybrid method combining intraoperative cone-beam CT (CBCT) imaging, free-form deformation image registration, and a poroelastic lung model with allowance for air evacuation. The difficult problem of estimating intraoperative lung deformations is decomposed into two more tractable sub-problems: (i) estimating the deformation due the change of patient pose from preoperative CT (supine) to intraoperative CBCT (lateral decubitus); and (ii) estimating the pneumothorax deformation, i.e. a collapse of the lung within the thoracic cage. We were able to demonstrate the feasibility of our localization framework with a retrospective validation study on 5 VATS clinical cases. Average initial errors in the range of 22 to 38 mm were reduced to the range of 4 to 14 mm, corresponding to an error correction in the range of 63 to 85%. To our knowledge, this is the first markerless lung deformation compensation method dedicated to VATS and validated on actual clinical data.
在电视辅助胸腔镜手术(VATS)中切除小的、低密度或深部肺结节具有手术挑战性。临床实践中的结节定位方法通常依赖于术前放置标记物,这可能会导致临床并发症。我们基于一种混合方法提出了一种用于VATS的无标记肺结节定位框架,该方法结合了术中锥形束CT(CBCT)成像、自由形式变形图像配准以及考虑空气排出的多孔弹性肺模型。估计术中肺变形的难题被分解为两个更易于处理的子问题:(i)估计由于患者体位从术前CT(仰卧位)变为术中CBCT(侧卧位)而导致的变形;(ii)估计气胸变形,即胸廓内肺的萎陷。我们通过对5例VATS临床病例的回顾性验证研究证明了我们定位框架的可行性。平均初始误差在22至38毫米范围内降低到了4至14毫米范围内,对应误差校正范围为63至85%。据我们所知,这是第一种专门用于VATS并在实际临床数据上得到验证的无标记肺变形补偿方法。