Suppr超能文献

基于深度学习的实时超弹性材料模拟。

Simulation of hyperelastic materials in real-time using deep learning.

机构信息

Inria, Strasbourg, France; University of Strasbourg, ICube, Strasbourg, France.

ARTORG Center, University of Bern, Switzerland.

出版信息

Med Image Anal. 2020 Jan;59:101569. doi: 10.1016/j.media.2019.101569. Epub 2019 Oct 2.

Abstract

The finite element method (FEM) is among the most commonly used numerical methods for solving engineering problems. Due to its computational cost, various ideas have been introduced to reduce computation times, such as domain decomposition, parallel computing, adaptive meshing, and model order reduction. In this paper we present U-Mesh: A data-driven method based on a U-Net architecture that approximates the non-linear relation between a contact force and the displacement field computed by a FEM algorithm. We show that deep learning, one of the latest machine learning methods based on artificial neural networks, can enhance computational mechanics through its ability to encode highly non-linear models in a compact form. Our method is applied to three benchmark examples: a cantilever beam, an L-shape and a liver model subject to moving punctual loads. A comparison between our method and proper orthogonal decomposition (POD) is done through the paper. The results show that U-Mesh can perform very fast simulations on various geometries and topologies, mesh resolutions and number of input forces with very small errors.

摘要

有限元法(FEM)是解决工程问题最常用的数值方法之一。由于其计算成本,已经引入了各种思想来减少计算时间,例如域分解、并行计算、自适应网格和模型降阶。在本文中,我们提出了 U-Mesh:一种基于 U-Net 架构的数据驱动方法,该方法近似于通过有限元算法计算的接触力与位移场之间的非线性关系。我们表明,深度学习作为最新的基于人工神经网络的机器学习方法之一,通过其在紧凑形式中编码高度非线性模型的能力,可以增强计算力学。我们的方法应用于三个基准示例:悬臂梁、L 形和肝脏模型,受到移动点状载荷的作用。通过本文比较了我们的方法和本征正交分解(POD)。结果表明,U-Mesh 可以在各种几何形状和拓扑结构、网格分辨率和输入力数量上进行非常快速的模拟,并且误差非常小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验