Becker Megan L, Ahmed Anthony O, Benning Stephen D, Barchard Kimberly A, John Samantha E, Allen Daniel N
Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA.
Department of Psychiatry, Weill Cornell Medicine, White Plains, NY, USA.
J Psychiatr Res. 2021 Apr;136:132-139. doi: 10.1016/j.jpsychires.2021.01.051. Epub 2021 Feb 2.
Despite extensive study of cognition in schizophrenia, it remains unclear as to whether cognitive deficits and their latent structure are best characterized as reflecting a generalized deficit, specific deficits, or some combination of general and specific constructs.
To clarify latent structure of cognitive abilities, confirmatory factor analysis was used to examine the latent structure of cognitive data collected for the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) for Schizophrenia study. Baseline assessment data (n = 813) were randomly divided into calibration (n = 413) and cross-validation samples (n = 400). To examine whether generalized or specific deficit models provided better explanation of the data, we estimated first-order, hierarchical, and bifactor models.
A bifactor model with seven specific factors and one general factor provided the best fit to the data for both the calibration and cross-validation samples.
These findings lend support for a replicable bifactor model of cognition in schizophrenia, characterized by both a general cognitive factor and specific domains. This suggests that cognitive deficits in schizophrenia might be best understood by separate general and specific contributions.
尽管对精神分裂症的认知进行了广泛研究,但认知缺陷及其潜在结构究竟是最能体现为一种普遍缺陷、特定缺陷,还是普遍与特定结构的某种组合,仍不清楚。
为了阐明认知能力的潜在结构,采用验证性因素分析来检验为精神分裂症干预有效性临床抗精神病药物试验(CATIE)收集的认知数据的潜在结构。基线评估数据(n = 813)被随机分为校准样本(n = 413)和交叉验证样本(n = 400)。为了检验普遍缺陷模型或特定缺陷模型是否能更好地解释数据,我们估计了一阶、层次和双因素模型。
一个包含七个特定因素和一个一般因素的双因素模型对校准样本和交叉验证样本的数据拟合效果最佳。
这些发现支持了精神分裂症认知的可重复双因素模型,其特征为一个一般认知因素和特定领域。这表明,精神分裂症的认知缺陷可能最好通过一般和特定的单独贡献来理解。