Suppr超能文献

基于刺激变化的训练增强了人工语法学习。

Stimulus variation-based training enhances artificial grammar learning.

机构信息

Learning Disabilities Studies, School of Education, Bar-Ilan University, 52900 Ramat-Gan, Israel.

Learning Disabilities Studies, School of Education, Bar-Ilan University, 52900 Ramat-Gan, Israel.

出版信息

Acta Psychol (Amst). 2021 Mar;214:103252. doi: 10.1016/j.actpsy.2021.103252. Epub 2021 Feb 12.

Abstract

The current study was designed to explore whether statistical learning ability is affected by the diversity of the stimulus set used in the training phase. The effect of stimulus diversity was assessed by controlling and manipulating the number of exposures to a given set and the number of unique strings presented to the learner during the training phase. 147 students participated in two studies. In the unvaried stimulus study, 71 participants learned the same basic set of 15 exemplars, once(15 × 1 exposure), twice (15 × 2 exposures = 30 total strings) and 3 times (15 × 3 exposures = 45 total strings). In the varied stimulus study, 75 participants learned 15, 30 and 45, all of which were unique, unrepeated exemplars. All groups were asked to classify test strings for their grammaticality following training. Results of the d' measures in the unvaried stimulus study indicate similar performance across the groups. Conversely, the results of the varied stimulus study show that the group presented with 45 unique strings performed significantly better than the baseline group (15 strings). Analysis of the differences across the equivalent groups in the two studies (15 × 2 exposures vs. 30 unique strings and 15 × 3 exposures vs. 45 unique strings) indicates differences in performance only between the group who was presented with the same 15 strings three times and the group presented with 45 unrepeated strings. Taken together, our results shed additional light on the central role of stimulus variation in Artificial Grammar Learning.

摘要

本研究旨在探索在训练阶段使用的刺激集多样性是否会影响统计学习能力。通过控制和操纵学习者在训练阶段接触给定刺激集的次数和呈现给学习者的独特字符串的数量来评估刺激多样性的影响。147 名学生参与了两项研究。在不变刺激研究中,71 名参与者学习了相同的基本 15 个范例集,一次(15×1 次暴露)、两次(15×2 次暴露=30 个总字符串)和三次(15×3 次暴露=45 个总字符串)。在多变刺激研究中,75 名参与者学习了 15、30 和 45 个独特的、未重复的范例。所有组在训练后都被要求对测试字符串进行语法分类。不变刺激研究中 d'测量的结果表明,所有组的表现相似。相反,多变刺激研究的结果表明,呈现 45 个独特字符串的组的表现明显优于基线组(15 个字符串)。对两项研究中等效组(15×2 次暴露与 30 个独特字符串和 15×3 次暴露与 45 个独特字符串)之间的差异进行分析表明,只有呈现相同 15 个字符串三次的组和呈现 45 个不重复字符串的组之间存在表现差异。总之,我们的结果进一步说明了刺激变化在人工语法学习中的核心作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验