Suppr超能文献

信息论与人工语法学习:从冗余中推断语法性

Information theory and artificial grammar learning: inferring grammaticality from redundancy.

作者信息

Jamieson Randall K, Nevzorova Uliana, Lee Graham, Mewhort D J K

机构信息

Department of Psychology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.

Department of Psychology, Queen's University at Kingston, Kingston, Canada.

出版信息

Psychol Res. 2016 Mar;80(2):195-211. doi: 10.1007/s00426-015-0660-2. Epub 2015 Apr 1.

Abstract

In artificial grammar learning experiments, participants study strings of letters constructed using a grammar and then sort novel grammatical test exemplars from novel ungrammatical ones. The ability to distinguish grammatical from ungrammatical strings is often taken as evidence that the participants have induced the rules of the grammar. We show that judgements of grammaticality are predicted by the local redundancy of the test strings, not by grammaticality itself. The prediction holds in a transfer test in which test strings involve different letters than the training strings. Local redundancy is usually confounded with grammaticality in stimuli widely used in the literature. The confounding explains why the ability to distinguish grammatical from ungrammatical strings has popularized the idea that participants have induced the rules of the grammar, when they have not. We discuss the judgement of grammaticality task in terms of attribute substitution and pattern goodness. When asked to judge grammaticality (an inaccessible attribute), participants answer an easier question about pattern goodness (an accessible attribute).

摘要

在人工语法学习实验中,参与者学习用一种语法构建的字母串,然后将新的符合语法的测试示例与不符合语法的新示例进行分类。区分符合语法和不符合语法的字符串的能力通常被视为参与者已经归纳出语法规则的证据。我们表明,语法性判断是由测试字符串的局部冗余预测的,而不是由语法性本身预测的。这一预测在迁移测试中成立,在该测试中,测试字符串涉及与训练字符串不同的字母。在文献中广泛使用的刺激中,局部冗余通常与语法性混淆。这种混淆解释了为什么区分符合语法和不符合语法的字符串的能力使人们普遍认为参与者已经归纳出了语法规则,而实际上他们并没有。我们从属性替换和模式优劣的角度讨论语法性判断任务。当被要求判断语法性(一个难以获取的属性)时,参与者会回答一个关于模式优劣(一个易于获取的属性)的更简单的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验