Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
J Chem Phys. 2021 Feb 14;154(6):064108. doi: 10.1063/5.0032362.
Molecular-orbital-based machine learning (MOB-ML) provides a general framework for the prediction of accurate correlation energies at the cost of obtaining molecular orbitals. The application of Nesbet's theorem makes it possible to recast a typical extrapolation task, training on correlation energies for small molecules and predicting correlation energies for large molecules, into an interpolation task based on the properties of orbital pairs. We demonstrate the importance of preserving physical constraints, including invariance conditions and size consistency, when generating the input for the machine learning model. Numerical improvements are demonstrated for different datasets covering total and relative energies for thermally accessible organic and transition-metal containing molecules, non-covalent interactions, and transition-state energies. MOB-ML requires training data from only 1% of the QM7b-T dataset (i.e., only 70 organic molecules with seven and fewer heavy atoms) to predict the total energy of the remaining 99% of this dataset with sub-kcal/mol accuracy. This MOB-ML model is significantly more accurate than other methods when transferred to a dataset comprising of 13 heavy atom molecules, exhibiting no loss of accuracy on a size intensive (i.e., per-electron) basis. It is shown that MOB-ML also works well for extrapolating to transition-state structures, predicting the barrier region for malonaldehyde intramolecular proton-transfer to within 0.35 kcal/mol when only trained on reactant/product-like structures. Finally, the use of the Gaussian process variance enables an active learning strategy for extending the MOB-ML model to new regions of chemical space with minimal effort. We demonstrate this active learning strategy by extending a QM7b-T model to describe non-covalent interactions in the protein backbone-backbone interaction dataset to an accuracy of 0.28 kcal/mol.
基于分子轨道的机器学习(MOB-ML)为准确相关能量的预测提供了一个通用框架,但需要获得分子轨道。利用 Nesbet 定理,可以将典型的外推任务(基于小分子的相关能量进行训练,并预测大分子的相关能量)重新表述为基于轨道对性质的内插任务。我们展示了当为机器学习模型生成输入时,保留物理约束(包括不变条件和大小一致性)的重要性。我们演示了针对不同数据集的数值改进,这些数据集涵盖了热可及的有机和含过渡金属分子的总能量和相对能量、非共价相互作用和过渡态能量。MOB-ML 仅需使用 QM7b-T 数据集的 1%(即,仅 70 个具有 7 个或更少重原子的有机分子)的训练数据,就可以以亚千卡/摩尔的精度预测该数据集剩余 99%的总能量。当将此 MOB-ML 模型转移到包含 13 个重原子分子的数据集时,其准确性显著优于其他方法,而且在密集(即,每电子)基础上也没有精度损失。结果表明,MOB-ML 也适用于过渡态结构的外推,仅在反应物/产物类似结构上进行训练,就可以将丙二醛分子内质子转移的势垒区域预测到 0.35 千卡/摩尔以内。最后,使用高斯过程方差可以实现一种主动学习策略,以便以最小的努力将 MOB-ML 模型扩展到新的化学空间区域。我们通过将 QM7b-T 模型扩展到蛋白质骨架-骨架相互作用数据集的非共价相互作用,以 0.28 千卡/摩尔的精度演示了这种主动学习策略。