University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal.
National Institute of Health Doutor Ricardo Jorge, Padre Cruz Av., 1649-016, Lisboa, Portugal.
Sci Rep. 2021 Feb 15;11(1):3801. doi: 10.1038/s41598-021-83392-w.
Familial hypercholesterolaemia increases circulating LDL-C levels and leads to premature cardiovascular disease when undiagnosed or untreated. Current guidelines support genetic testing in patients complying with clinical diagnostic criteria and cascade screening of their family members. However, most of hyperlipidaemic subjects do not present pathogenic variants in the known disease genes, and most likely suffer from polygenic hypercholesterolaemia, which translates into a relatively low yield of genetic screening programs. This study aims to identify new biomarkers and develop new approaches to improve the identification of individuals carrying monogenic causative variants. Using a machine-learning approach in a paediatric dataset of individuals, tested for disease causative genes and with an extended lipid profile, we developed new models able to classify familial hypercholesterolaemia patients with a much higher specificity than currently used methods. The best performing models incorporated parameters absent from the most common FH clinical criteria, namely apoB/apoA-I, TG/apoB and LDL1. These parameters were found to contribute to an improved identification of monogenic individuals. Furthermore, models using only TC and LDL-C levels presented a higher specificity of classification when compared to simple cut-offs. Our results can be applied towards the improvement of the yield of genetic screening programs and corresponding costs.
家族性高胆固醇血症会增加循环中的 LDL-C 水平,导致心血管疾病提前发生,如果未被诊断或未得到治疗。目前的指南支持对符合临床诊断标准的患者进行基因检测,并对其家庭成员进行级联筛查。然而,大多数高脂血症患者在已知疾病基因中并未发现致病性变异,他们很可能患有多基因高胆固醇血症,这导致遗传筛查计划的收益相对较低。本研究旨在寻找新的生物标志物并开发新方法,以提高携带单基因致病变异个体的识别能力。我们使用机器学习方法分析了一组儿科患者的数据,这些患者已接受疾病致病基因检测,并进行了扩展的脂质谱分析,我们开发了新的模型,能够以比目前使用的方法更高的特异性对家族性高胆固醇血症患者进行分类。表现最好的模型纳入了常见 FH 临床标准中不存在的参数,即 apoB/apoA-I、TG/apoB 和 LDL1。这些参数有助于更好地识别单基因个体。此外,与简单的截止值相比,仅使用 TC 和 LDL-C 水平的模型具有更高的分类特异性。我们的研究结果可以应用于提高遗传筛查计划的收益和相应的成本。