From the Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
Department of Environmental Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
Epidemiology. 2021 May 1;32(3):421-424. doi: 10.1097/EDE.0000000000001336.
Collaborative research often combines findings across multiple, independent studies via meta-analysis. Ideally, all study estimates that contribute to the meta-analysis will be equally unbiased. Many meta-analyses require all studies to measure the same covariates. We explored whether differing minimally sufficient sets of confounders identified by a directed acyclic graph (DAG) ensures comparability of individual study estimates. Our analysis applied four statistical estimators to multiple minimally sufficient adjustment sets identified in a single DAG.
We compared estimates obtained via linear, log-binomial, and logistic regression and inverse probability weighting, and data were simulated based on a previously published DAG.
Our results show that linear, log-binomial, and inverse probability weighting estimators generally provide the same estimate of effect for different estimands that are equally sufficient to adjust confounding bias, with modest differences in random error. In contrast, logistic regression often performed poorly, with notable differences in effect estimates obtained from unique minimally sufficient adjustment sets, and larger standard errors than other estimators.
Our findings do not support the reliance of collaborative research on logistic regression results for meta-analyses. Use of DAGs to identify potentially differing minimally sufficient adjustment sets can allow meta-analyses without requiring the exact same covariates.
协作研究通常通过荟萃分析结合多个独立研究的结果。理想情况下,所有为荟萃分析做出贡献的研究估计都将具有相同的无偏性。许多荟萃分析都要求所有研究都要测量相同的协变量。我们探讨了通过有向无环图(DAG)确定的差异最小充分的混杂因素集是否能确保个体研究估计的可比性。我们的分析将四个统计估计器应用于单个 DAG 中确定的多个最小充分调整集中。
我们比较了通过线性、对数二项式和逻辑回归以及逆概率加权获得的估计值,并根据之前发表的 DAG 对数据进行了模拟。
我们的结果表明,对于同样能够调整混杂偏差的不同估计量,线性、对数二项式和逆概率加权估计器通常会提供相同的效应估计值,随机误差略有差异。相比之下,逻辑回归的表现往往不佳,从独特的最小充分调整集中获得的效应估计值有显著差异,并且标准误差大于其他估计器。
我们的研究结果不支持协作研究对荟萃分析中逻辑回归结果的依赖。使用 DAG 来识别可能存在差异的最小充分调整集可以允许进行荟萃分析,而不需要完全相同的协变量。