Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
Genome Biol Evol. 2021 Jun 8;13(6). doi: 10.1093/gbe/evab030.
Metazoans usually reproduce sexually, blending the unique identity of parental genomes for the next generation through functional crossing-over and recombination in meiosis. However, some metazoan lineages have evolved reproductive systems where offspring are either full (clonal) or partial (hemiclonal) genetic replicas. In the latter group, the process of uniparental genome elimination selectively eliminates either the maternal or paternal genome from germ cells, and only one parental genome is selected for transmission. Although fairly common in plants, hybridogenesis (i.e., clonal haploidization via chromosome elimination) remains a poorly understood process in animals. Here, we explore the proximal cytogenomic mechanisms of somatic and germ cell chromosomes in sexual and hybrid genotypes of Australian carp gudgeons (Hypseleotris) by tracing the fate of each set during mitosis (in somatic tissues) and meiosis (in gonads). Our comparative study of diploid hybrid and sexual individuals revealed visually functional gonads in male and female hybrid genotypes and generally high karyotype variability, although the number of chromosome arms remains constant. Our results delivered direct evidence for classic hybridogenesis as a reproductive mode in carp gudgeons. Two parental sets with integral structure in the hybrid soma (the F1 constitution) contrasted with uniparental chromosomal inheritance detected in gonads. The inheritance mode happens through premeiotic genome duplication of the parental genome to be transmitted, whereas the second parental genome is likely gradually eliminated already in juvenile individuals. The role of metacentric chromosomes in hybrid evolution is also discussed.
后生动物通常通过有性生殖,在减数分裂中通过功能交叉和重组融合父母基因组的独特身份,为下一代创造独特的身份。然而,一些后生动物谱系已经进化出生殖系统,后代要么是完全(克隆)的,要么是部分(半克隆)的遗传副本。在后一组中,单亲基因组消除的过程选择性地从生殖细胞中消除母体或父本基因组,并且仅选择一个亲本基因组进行传递。尽管在植物中相当普遍,但杂种发生(即通过染色体消除实现克隆单倍体化)在动物中仍然是一个了解甚少的过程。在这里,我们通过在有丝分裂(在体细胞组织中)和减数分裂(在性腺中)期间追踪每组染色体的命运,探索澳大利亚鲤鱼(Hypseleotris)的有性和杂种基因型的体细胞和生殖细胞染色体的近缘细胞遗传学机制。我们对二倍体杂种和有性个体的比较研究揭示了雄性和雌性杂种基因型中视觉功能的性腺,并且通常具有很高的染色体组变异性,尽管染色体臂的数量保持不变。我们的研究结果为鲤鱼中经典杂种发生作为一种生殖模式提供了直接证据。杂种体(F1 组成)中的两个亲本组具有完整的结构,与在性腺中检测到的单亲染色体遗传形成鲜明对比。遗传模式是通过要传递的亲本基因组的减数分裂前基因组复制发生的,而第二个亲本基因组可能已经在幼年个体中逐渐消除。还讨论了着丝粒染色体在杂种进化中的作用。