Suppr超能文献

视紫红质在视杆感光细胞膜中的超分子组织。

Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.

机构信息

Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.

出版信息

Pflugers Arch. 2021 Sep;473(9):1361-1376. doi: 10.1007/s00424-021-02522-5. Epub 2021 Feb 16.

Abstract

Rhodopsin is the light receptor in rod photoreceptor cells that initiates scotopic vision. Studies on the light receptor span well over a century, yet questions about the organization of rhodopsin within the photoreceptor cell membrane still persist and a consensus view on the topic is still elusive. Rhodopsin has been intensely studied for quite some time, and there is a wealth of information to draw from to formulate an organizational picture of the receptor in native membranes. Early experimental evidence in apparent support for a monomeric arrangement of rhodopsin in rod photoreceptor cell membranes is contrasted and reconciled with more recent visual evidence in support of a supramolecular organization of rhodopsin. What is known so far about the determinants of forming a supramolecular structure and possible functional roles for such an organization are also discussed. Many details are still missing on the structural and functional properties of the supramolecular organization of rhodopsin in rod photoreceptor cell membranes. The emerging picture presented here can serve as a springboard towards a more in-depth understanding of the topic.

摘要

视紫红质是杆状光感受器细胞中的光受体,它启动暗视觉。对光受体的研究已经超过一个世纪,但关于视紫红质在光感受器细胞膜内的组织方式的问题仍然存在,而且关于这个主题的共识观点仍然难以捉摸。视紫红质已经被深入研究了相当长的一段时间,有大量的信息可以用来构建受体在天然膜中的组织图像。早期的实验证据明显支持视紫红质在杆状光感受器细胞膜中以单体形式排列,这与最近支持视紫红质超分子组织的视觉证据形成对比并得到调和。关于形成超分子结构的决定因素以及这种组织的可能功能作用的知识也在讨论中。关于杆状光感受器细胞膜中超分子组织的视紫红质的结构和功能特性,目前仍有许多细节尚不清楚。这里呈现的新图景可以作为深入了解该主题的跳板。

相似文献

1
Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.
Pflugers Arch. 2021 Sep;473(9):1361-1376. doi: 10.1007/s00424-021-02522-5. Epub 2021 Feb 16.
2
Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
Biochemistry. 2010 Dec 14;49(49):10412-20. doi: 10.1021/bi101345x. Epub 2010 Nov 11.
3
Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy.
Methods Mol Biol. 2019;1886:61-74. doi: 10.1007/978-1-4939-8894-5_4.
4
Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.
Biochim Biophys Acta Mol Cell Res. 2017 Oct;1864(10):1691-1702. doi: 10.1016/j.bbamcr.2017.06.013. Epub 2017 Jun 20.
5
Rhodopsin Oligomerization and Aggregation.
J Membr Biol. 2019 Oct;252(4-5):413-423. doi: 10.1007/s00232-019-00078-1. Epub 2019 Jul 8.
6
A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
FEBS Lett. 2013 Jun 27;587(13):2060-6. doi: 10.1016/j.febslet.2013.05.017. Epub 2013 May 16.
7
Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt A):26-34. doi: 10.1016/j.bbamem.2014.10.007. Epub 2014 Oct 12.
8
Overexpression of rhodopsin alters the structure and photoresponse of rod photoreceptors.
Biophys J. 2009 Feb;96(3):939-50. doi: 10.1016/j.bpj.2008.10.016.
9
Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs.
Commun Biol. 2019 Jun 14;2:209. doi: 10.1038/s42003-019-0459-6. eCollection 2019.
10
Organization of rhodopsin molecules in native membranes of rod cells--an old theoretical model compared to new experimental data.
J Mol Model. 2005 Sep;11(4-5):385-91. doi: 10.1007/s00894-005-0268-3. Epub 2005 Jun 1.

引用本文的文献

2
A synthetic opsin restores vision in patients with severe retinal degeneration.
Mol Ther. 2025 May 7;33(5):2279-2290. doi: 10.1016/j.ymthe.2025.03.031. Epub 2025 Mar 21.
3
The hypothalamic transcriptome reveals the importance of visual perception on the egg production of Wanxi white geese.
Front Vet Sci. 2024 Sep 20;11:1449032. doi: 10.3389/fvets.2024.1449032. eCollection 2024.
4
Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa.
Nat Commun. 2024 Feb 16;15(1):1451. doi: 10.1038/s41467-024-45748-4.
5
Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies.
Chem Rec. 2023 Oct;23(10):e202300113. doi: 10.1002/tcr.202300113. Epub 2023 Jun 2.
6
Where vision begins.
Pflugers Arch. 2021 Sep;473(9):1333-1337. doi: 10.1007/s00424-021-02605-3.

本文引用的文献

1
Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes.
Sci Rep. 2020 Oct 21;10(1):17885. doi: 10.1038/s41598-020-74628-2.
2
Light or tyrosine phosphorylation recruits retinal rod outer segment proteins to lipid rafts.
Biochimie. 2020 Oct;177:1-12. doi: 10.1016/j.biochi.2020.07.016. Epub 2020 Aug 3.
3
Differential adaptations in rod outer segment disc membranes in different models of congenital stationary night blindness.
Biochim Biophys Acta Biomembr. 2020 Oct 1;1862(10):183396. doi: 10.1016/j.bbamem.2020.183396. Epub 2020 Jun 11.
7
Cryo-EM structure of the native rhodopsin dimer in nanodiscs.
J Biol Chem. 2019 Sep 27;294(39):14215-14230. doi: 10.1074/jbc.RA119.010089. Epub 2019 Aug 9.
8
Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation.
Mol Cell. 2019 Aug 22;75(4):781-790.e3. doi: 10.1016/j.molcel.2019.06.007. Epub 2019 Jul 9.
9
Rhodopsin Oligomerization and Aggregation.
J Membr Biol. 2019 Oct;252(4-5):413-423. doi: 10.1007/s00232-019-00078-1. Epub 2019 Jul 8.
10
Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs.
Commun Biol. 2019 Jun 14;2:209. doi: 10.1038/s42003-019-0459-6. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验