Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany.
Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University of Tübingen, Silcherstrasse 7/1, 72076 Tübingen, Germany.
ACS Biomater Sci Eng. 2021 Jul 12;7(7):3006-3017. doi: 10.1021/acsbiomaterials.0c01062. Epub 2021 Feb 16.
In recent years, organ-on-chip (OoC) systems have provoked increasing interest among researchers from different disciplines. OoCs enable the recreation of -like microenvironments and the generation of a wide range of different tissues or organs in a miniaturized way. Most commonly, OoC platforms are based on microfluidic modules made of polydimethylsiloxane (PDMS). While advantageous in terms of biocompatibility, oxygen permeability, and fast prototyping amenability, PDMS features a major limitation as it absorbs small hydrophobic molecules, including many types of test compounds, hormones, and cytokines. Another common feature of OoC systems is the integration of membranes (i) to separate different tissue compartments, (ii) to confine convective perfusion to media channels, and/or (iii) to provide mechanical support for cell monolayers. Typically, porous polymer membranes are microstructured using track-etching (e.g., polyethylene terephthalate; PET) or lithography (e.g., PDMS). Although membranes of different biomechanical properties (rigid PET to elastic PDMS) have been utilized, the membrane structure and material remain mostly artificial and do not resemble conditions (extracellular matrix). Here, we report a method for the reliable fabrication and integration of electrospun membranes in OoC modules, which are made of laser-structured poly(methyl methacrylate) (PMMA). The choice of PMMA as base material provides optical parameters and biocompatibility similar to PDMS while avoiding the absorption problem. Using electrospinning for the generation of 3D membranes, microenvironments resembling the native extracellular matrix (ECM) can be generated. We tested two different kinds of electrospun membranes and established processes for a tight integration into PMMA modules. Human (microvasculature) endothelial as well as (retinal pigment) epithelial cell layers could be successfully cultured inside the systems for up to 7 days, while being either directly exposed to (endothelial cells) or protected (epithelial cells) from the shear flow. Our novel method enables the versatile fabrication of OoC platforms that can be tailored to the native environment of tissues of interest and at the same time are applicable for the testing of compounds or chemicals without constraints.
近年来,器官芯片(Organ-on-Chip,OoC)系统引起了不同学科研究人员的浓厚兴趣。OoC 能够重建类器官微环境,并以微型化的方式生成广泛的不同组织或器官。最常见的 OoC 平台基于聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)制成的微流控模块。虽然 PDMS 在生物相容性、氧气渗透性和快速原型制作方面具有优势,但它有一个主要的局限性,即它会吸收小分子疏水分子,包括许多类型的测试化合物、激素和细胞因子。OoC 系统的另一个共同特征是膜的集成(i)分离不同的组织隔室,(ii)将对流灌注限制在介质通道中,和/或(iii)为细胞单层提供机械支撑。通常,多孔聚合物膜使用刻蚀(例如,聚对苯二甲酸乙二醇酯;Polyethylene terephthalate,PET)或光刻(例如,PDMS)进行微结构处理。尽管已经使用了不同生物力学特性的膜(刚性的 PET 到弹性的 PDMS),但膜结构和材料仍然主要是人为的,与真实组织条件(细胞外基质)不同。在这里,我们报告了一种在器官芯片模块中可靠制造和集成电纺膜的方法,该模块由激光结构化的聚甲基丙烯酸甲酯(Poly(methyl methacrylate),PMMA)制成。选择 PMMA 作为基础材料提供了类似于 PDMS 的光学参数和生物相容性,同时避免了吸收问题。使用电纺丝生成 3D 膜,可以产生类似于天然细胞外基质(Extracellular Matrix,ECM)的微环境。我们测试了两种不同类型的电纺膜,并建立了将其紧密集成到 PMMA 模块中的工艺。人微血管内皮细胞(microvasculature)和(视网膜色素)上皮细胞层可以在系统中成功培养长达 7 天,而内皮细胞直接暴露于(endothelial cells)或受保护(epithelial cells)于剪切流。我们的新方法能够灵活地制造器官芯片平台,可以根据感兴趣组织的天然环境进行定制,同时可用于测试化合物或化学品,而不受限制。