University of Twente and Leiden University, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
Neural Netw. 2021 May;137:119-126. doi: 10.1016/j.neunet.2021.01.020. Epub 2021 Jan 29.
There is a longstanding debate whether the Kolmogorov-Arnold representation theorem can explain the use of more than one hidden layer in neural networks. The Kolmogorov-Arnold representation decomposes a multivariate function into an interior and an outer function and therefore has indeed a similar structure as a neural network with two hidden layers. But there are distinctive differences. One of the main obstacles is that the outer function depends on the represented function and can be wildly varying even if the represented function is smooth. We derive modifications of the Kolmogorov-Arnold representation that transfer smoothness properties of the represented function to the outer function and can be well approximated by ReLU networks. It appears that instead of two hidden layers, a more natural interpretation of the Kolmogorov-Arnold representation is that of a deep neural network where most of the layers are required to approximate the interior function.
关于 Kolmogorov-Arnold 表示定理是否可以解释神经网络中使用多个隐藏层的问题,一直存在争议。Kolmogorov-Arnold 表示将多元函数分解为内部函数和外部函数,因此确实与具有两个隐藏层的神经网络具有相似的结构。但也存在明显的差异。主要障碍之一是外部函数取决于表示的函数,即使表示的函数是平滑的,它也可能变化很大。我们推导出了 Kolmogorov-Arnold 表示的修改,将表示函数的平滑性属性转移到外部函数,并可以通过 ReLU 网络很好地逼近。似乎 Kolmogorov-Arnold 表示的更自然的解释不是两个隐藏层,而是深度神经网络,其中大部分层都需要逼近内部函数。