Suppr超能文献

在Transformer注意力机制中使用柯尔莫哥洛夫 - 阿诺德网络增强低光照图像

Enhancing Low-Light Images with Kolmogorov-Arnold Networks in Transformer Attention.

作者信息

Brateanu Alexandru, Balmez Raul, Orhei Ciprian, Ancuti Cosmin, Ancuti Codruta

机构信息

Department of Computer Science, University of Machester, Manchester M13 9PL, UK.

Faculty of Electronics, Telecommunications and Information Technologies, Polytechnic University Timisoara, 300223 Timisoara, Romania.

出版信息

Sensors (Basel). 2025 Jan 8;25(2):327. doi: 10.3390/s25020327.

Abstract

Low-light image enhancement (LLIE) techniques improve the performance of image sensors by enhancing visibility and details in poorly lit environments and have significantly benefited from recent research into Transformer models. This work presents a novel Transformer attention mechanism inspired by the Kolmogorov-Arnold representation theorem, incorporating learnable non-linearity and multivariate function decomposition. This innovative mechanism is the foundation of KAN-T, our proposed Transformer network. By enhancing feature flexibility and enabling the model to capture broader contextual information, KAN-T achieves superior performance. Our comprehensive experiments, both quantitative and qualitative, demonstrate that the proposed method achieves state-of-the-art performance in low-light image enhancement, highlighting its effectiveness and wide-ranging applicability. The code will be released upon publication.

摘要

低光图像增强(LLIE)技术通过增强光线不足环境中的可见性和细节来提高图像传感器的性能,并且从最近对Transformer模型的研究中受益匪浅。这项工作提出了一种受柯尔莫哥洛夫-阿诺德表示定理启发的新型Transformer注意力机制,融合了可学习的非线性和多元函数分解。这种创新机制是我们提出的Transformer网络KAN-T的基础。通过增强特征灵活性并使模型能够捕获更广泛的上下文信息,KAN-T取得了卓越的性能。我们全面的定量和定性实验表明,所提出的方法在低光图像增强方面达到了当前的最优性能,突出了其有效性和广泛的适用性。代码将在发表时发布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5e/11768327/d365604aab72/sensors-25-00327-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验