Suppr超能文献

增强CycleGAN-M和YOLOv8s-KEF数据集以识别苹果叶病害。

Enhancing the dataset of CycleGAN-M and YOLOv8s-KEF for identifying apple leaf diseases.

作者信息

Gao Lijun, Wu Hongxin, Sheng Yunsheng, Liu Kunlin, Wu Huanhuan, Zhang Xuedong

机构信息

College of Information Engineering, Tarim University, City of Aral, China.

Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, City of Aral, China.

出版信息

PLoS One. 2025 May 30;20(5):e0321770. doi: 10.1371/journal.pone.0321770. eCollection 2025.

Abstract

Accurate diagnosis of apple diseases is vital for tree health, yield improvement, and minimizing economic losses. This study introduces a deep learning-based model to tackle issues like limited datasets, small sample sizes, and low recognition accuracy in detecting apple leaf diseases. The approach begins with enhancing the CycleGAN-M network using a multi-scale attention mechanism to generate synthetic samples, improving model robustness and generalization by mitigating imbalances in disease-type representation. Next, an improved YOLOv8s-KEF model is introduced to overcome limitations in feature extraction, particularly for small lesions and complex textures in natural environments. The model's backbone replaces the standard C2f structure with C2f-KanConv, significantly enhancing disease recognition capabilities. Additionally, we optimize the detection head with Efficient Multi-Scale Convolution (EMS-Conv), improving the model's ability to detect small targets while maintaining robustness and generalization across diverse disease types and conditions. Incorporating Focal-EIoU further reduces missed and false detections, enhancing overall accuracy. The experiment results demonstrate that the YOLOv8s-KEF model achieves 95.0% in accuracy, 93.1% in recall, 95.8% in precision, and an F1-score of 94.5%. Compared to the original YOLOv8s model, the proposed model improves accuracy by 7.2%, precision by 6.5%, and F1-score by 5.0%, with only a modest 6MB increase in model size. Furthermore, compared to Faster RCNN, ResNet50, SSD, YOLOv3-tiny, YOLOv6, YOLOv9s, and YOLOv10m, our model demonstrates substantial improvements, with up to 30.2% higher precision and 18.0% greater accuracy. This study used CycleGAN-M and YOLOv8s-KEF methods to enhance the detection capability of apple leaf diseases.

摘要

准确诊断苹果病害对于树木健康、提高产量以及最大限度减少经济损失至关重要。本研究引入了一种基于深度学习的模型,以解决苹果叶部病害检测中数据集有限、样本量小和识别准确率低等问题。该方法首先使用多尺度注意力机制增强CycleGAN-M网络以生成合成样本,通过减轻病害类型表示中的不平衡来提高模型的鲁棒性和泛化能力。接下来,引入改进的YOLOv8s-KEF模型以克服特征提取方面的局限性,特别是针对自然环境中的小病变和复杂纹理。该模型的主干将标准的C2f结构替换为C2f-KanConv,显著增强了病害识别能力。此外,我们使用高效多尺度卷积(EMS-Conv)优化检测头,提高了模型检测小目标的能力,同时在不同病害类型和条件下保持鲁棒性和泛化能力。结合Focal-EIoU进一步减少漏检和误检,提高整体准确率。实验结果表明,YOLOv8s-KEF模型的准确率达到95.0%,召回率为93.1%,精确率为95.8%,F1分数为94.5%。与原始的YOLOv8s模型相比,所提出的模型准确率提高了7.2%,精确率提高了6.5%,F1分数提高了5.0%,而模型大小仅适度增加了6MB。此外,与Faster RCNN、ResNet50、SSD、YOLOv3-tiny、YOLOv6、YOLOv9s和YOLOv10m相比,我们的模型有显著改进,精确率提高了30.2%,准确率提高了18.0%。本研究使用CycleGAN-M和YOLOv8s-KEF方法提高了苹果叶部病害的检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/991b/12124573/97014e1f0fa7/pone.0321770.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验