Segers Karen, Slosse Amorn, Viaene Johan, Bannier Michiel A G E, Van de Kant Kim D G, Dompeling Edward, Van Eeckhaut Ann, Vercammen Joeri, Vander Heyden Yvan
Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
Talanta. 2021 Apr 1;225:122080. doi: 10.1016/j.talanta.2021.122080. Epub 2021 Jan 6.
Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included. Rather than focusing on the analysis of target biomarkers or on the identification of biomarkers, different data analysis strategies, including a variety of pretreatment, classification and discrimination techniques, are evaluated regarding their capacity to distinguish the three classes based on subtle differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-MS analysis generates three spectra resulting from ion-molecule reactions of analyte molecules with HO, NO and O. Models were built with Linear Discriminant Analysis, Quadratic Discriminant Analysis, Soft Independent Modelling by Class Analogy, Partial Least Squares - Discriminant Analysis, K-Nearest Neighbours, and Classification and Regression Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the uncertainty related to the classification models associated with DOSC pretreatments (i.e. good classification found also for random classes), other models are built applying other preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a combined pre-processing method considering single value imputation results in 100% sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the applicability of the promising preprocessing methods and models must be further studied applying a larger representative data set with a more extensive number of samples for each class. Nevertheless, this pilot study showed already some potential for the untargeted SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of clinical breath samples.
选择离子流管质谱法(SIFT-MS)已在临床环境中作为使用目标生物标志物的呼气样本诊断工具。呼气采样是非侵入性的,因此与支气管镜检查相比对患者更加友好,支气管镜检查是评估气道炎症的金标准。在实际的试点研究中,纳入了55例哮喘、囊性纤维化儿童以及健康个体的呼气样本。研究并非专注于目标生物标志物的分析或生物标志物的鉴定,而是评估了不同的数据分析策略,包括各种预处理、分类和判别技术,看它们基于全扫描SIFT-MS光谱中的细微差异区分这三类样本的能力。需要适当的数据分析策略,因为这些全扫描光谱包含大量外部的,即不需要的变异。每次SIFT-MS分析会产生由分析物分子与HO、NO和O发生离子-分子反应产生的三个光谱。使用线性判别分析、二次判别分析、类比软独立建模、偏最小二乘判别分析、K近邻法以及分类与回归树构建模型。使用直接正交信号校正(DOSC)预处理找到了关于总体敏感性和特异性(两者均为100%)的完美模型。鉴于与DOSC预处理相关的分类模型存在不确定性(即随机类别也能得到良好分类),应用其他预处理方法构建了其他模型。一个采用考虑单值插补的组合预处理方法的偏最小二乘判别分析模型在校准方面具有100%的敏感性和特异性,但预测效果较差。二次判别分析之前的帕累托缩放在校准中得到41/55个正确分类的样本,交叉验证中得到34/55个。未来,必须使用每个类别样本数量更多、更具代表性的更大数据集进一步研究DOSC的不确定性以及有前景的预处理方法和模型的适用性。尽管如此,这项试点研究已经显示出非靶向SIFT-MS作为一种快速模式识别技术在临床呼气样本诊断中的一些潜力。