Suppr超能文献

基于偏最小二乘判别分析(PLS-DA)和软独立建模类比法(SIMCA)对来自摩洛哥四个地区的阿甘油进行分类时,多元滤波器对振动光谱指纹图谱的评估

Evaluation of Multivariate Filters on Vibrational Spectroscopic Fingerprints for the PLS-DA and SIMCA Classification of Argan Oils from Four Moroccan Regions.

作者信息

El Maouardi Meryeme, Alaoui Mansouri Mohammed, De Braekeleer Kris, Bouklouze Abdelaziz, Vander Heyden Yvan

机构信息

Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10100, Morocco.

Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.

出版信息

Molecules. 2023 Jul 27;28(15):5698. doi: 10.3390/molecules28155698.

Abstract

This study aimed to develop an analytical method to determine the geographical origin of Moroccan Argan oil through near-infrared (NIR) or mid-infrared (MIR) spectroscopic fingerprints. However, the classification may be problematic due to the spectral similarity of the components in the samples. Therefore, unsupervised and supervised classification methods-including principal component analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) and Soft Independent Modeling of Class Analogy (SIMCA)-were evaluated to distinguish between Argan oils from four regions. The spectra of 93 samples were acquired and preprocessed using both standard preprocessing methods and multivariate filters, such as External Parameter Orthogonalization, Generalized Least Squares Weighting and Orthogonal Signal Correction, to improve the models. Their accuracy, precision, sensitivity, and selectivity were used to evaluate the performance of the models. SIMCA and PLS-DA models generated after standard preprocessing failed to correctly classify all samples. However, successful models were produced after using multivariate filters. The NIR and MIR classification models show an equivalent accuracy. The PLS-DA models outperformed the SIMCA with 100% accuracy, specificity, sensitivity and precision. In conclusion, the studied multivariate filters are applicable on the spectroscopic fingerprints to geographically identify the Argan oils in routine monitoring, significantly reducing analysis costs and time.

摘要

本研究旨在开发一种分析方法,通过近红外(NIR)或中红外(MIR)光谱指纹图谱来确定摩洛哥阿甘油的地理来源。然而,由于样品中各成分的光谱相似性,分类可能存在问题。因此,对包括主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)和类类比软独立建模(SIMCA)在内的无监督和有监督分类方法进行了评估,以区分来自四个地区的阿甘油。采集了93个样品的光谱,并使用标准预处理方法和多变量滤波器(如外部参数正交化、广义最小二乘加权和正交信号校正)进行预处理,以改进模型。用它们的准确度、精密度、灵敏度和选择性来评估模型的性能。标准预处理后生成的SIMCA和PLS-DA模型未能正确分类所有样品。然而,使用多变量滤波器后产生了成功的模型。NIR和MIR分类模型显示出同等的准确度。PLS-DA模型在准确度、特异性、灵敏度和精密度方面均优于SIMCA,达到100%。总之,所研究的多变量滤波器适用于光谱指纹图谱,可在常规监测中对阿甘油进行地理识别,显著降低分析成本和时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2634/10419999/04f8c17cc058/molecules-28-05698-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验