Suppr超能文献

使用最小绝对收缩和选择算子(LASSO)模型对呼出气进行选择离子流管质谱分析(SIFT-MS)以预测透析疗效:一项初步研究。

Use of a least absolute shrinkage and selection operator (LASSO) model to selected ion flow tube mass spectrometry (SIFT-MS) analysis of exhaled breath to predict the efficacy of dialysis: a pilot study.

作者信息

Wang Maggie Haitian, Chong Ka Chun, Storer Malina, Pickering John W, Endre Zoltan H, Lau Steven Yf, Kwok Chloe, Lai Maria, Chung Hau Yin, Ying Zee Benny Chung

机构信息

Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. ShenZhen Research Institute, The Chinese University of Hong Kong, ShenZhen, People's Republic of China. These authors contributed equally to this work.

出版信息

J Breath Res. 2016 Sep 28;10(4):046004. doi: 10.1088/1752-7155/10/4/046004.

Abstract

Selected ion flow tube-mass spectrometry (SIFT-MS) provides rapid, non-invasive measurements of a full-mass scan of volatile compounds in exhaled breath. Although various studies have suggested that breath metabolites may be indicators of human disease status, many of these studies have included few breath samples and large numbers of compounds, limiting their power to detect significant metabolites. This study employed a least absolute shrinkage and selective operator (LASSO) approach to SIFT-MS data of breath samples to preliminarily evaluate the ability of exhaled breath findings to monitor the efficacy of dialysis in hemodialysis patients. A process of model building and validation showed that blood creatinine and urea concentrations could be accurately predicted by LASSO-selected masses. Using various precursors, the LASSO models were able to predict creatinine and urea concentrations with high adjusted R-square (>80%) values. The correlation between actual concentrations and concentrations predicted by the LASSO model (using precursor HO) was high (Pearson correlation coefficient  =  0.96). Moreover, use of full mass scan data provided a better prediction than compounds from selected ion mode. These findings warrant further investigations in larger patient cohorts. By employing a more powerful statistical approach to predict disease outcomes, breath analysis using SIFT-MS technology could be applicable in future to daily medical diagnoses.

摘要

选择离子流管质谱法(SIFT-MS)可对呼出气体中的挥发性化合物进行全质量扫描,实现快速、无创测量。尽管多项研究表明呼出气体代谢物可能是人类疾病状态的指标,但其中许多研究纳入的呼出气体样本较少,涉及的化合物数量众多,限制了它们检测重要代谢物的能力。本研究采用最小绝对收缩和选择算子(LASSO)方法处理呼出气体样本的SIFT-MS数据,以初步评估呼出气体检测结果监测血液透析患者透析疗效的能力。模型构建和验证过程表明,LASSO选择的质量数能够准确预测血肌酐和尿素浓度。使用各种前体,LASSO模型能够以较高的调整后R平方(>80%)值预测肌酐和尿素浓度。实际浓度与LASSO模型(使用前体HO)预测浓度之间的相关性很高(皮尔逊相关系数=0.96)。此外,使用全质量扫描数据比选择离子模式下的化合物能提供更好的预测效果。这些发现值得在更大的患者队列中进一步研究。通过采用更强大的统计方法来预测疾病结果,利用SIFT-MS技术进行呼出气体分析未来可能应用于日常医疗诊断。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验