Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea 16060.
Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea 16419.
eNeuro. 2021 Mar 12;8(2). doi: 10.1523/ENEURO.0495-20.2021. Print 2021 Mar-Apr.
The effective connectivity of brain networks can be assessed using functional magnetic resonance imaging (fMRI) to quantify the effects of local electrical microstimulation (EM) on distributed neuronal activity. The delivery of EM to specific brain regions, particularly with layer specificity, requires MRI compatible equipment that provides fine control of a stimulating electrode's position within the brain while minimizing imaging artifacts. To this end, we developed a microdrive made entirely of MRI compatible materials. The microdrive uses an integrated penetration grid to guide electrodes and relies on a microdrilling technique to eliminate the need for large craniotomies, further reducing implant maintenance and image distortions. The penetration grid additionally serves as a built-in MRI marker, providing a visible fiducial reference for estimating probe trajectories. Following the initial implant procedure, these features allow for multiple electrodes to be inserted, removed, and repositioned with minimal effort, using a screw-type actuator. To validate the design of the microdrive, we conducted an EM-coupled fMRI study with a male macaque monkey. The results verified that the microdrive can be used to deliver EM during MRI procedures with minimal imaging artifacts, even within a 7 Tesla (7T) environment. Future applications of the microdrive include neuronal recordings and targeted drug delivery. We provide computer aided design (CAD) templates and a parts list for modifying and fabricating the microdrive for specific research needs. These designs provide a convenient, cost-effective approach to fabricating MRI compatible microdrives for neuroscience research.
脑网络的有效连通性可以使用功能磁共振成像(fMRI)来评估,以量化局部电微刺激(EM)对分布式神经元活动的影响。为了将 EM 传递到特定的脑区,特别是具有层特异性,需要使用 MRI 兼容的设备,该设备可以精细控制刺激电极在大脑中的位置,同时最大限度地减少成像伪影。为此,我们开发了一种完全由 MRI 兼容材料制成的微驱动器。微驱动器使用集成的穿透网格来引导电极,并依赖于微钻技术,无需进行大的开颅手术,进一步减少了植入物的维护和图像扭曲。穿透网格还充当内置的 MRI 标记物,为估计探头轨迹提供可见的基准参考。在初始植入程序之后,这些特征允许使用螺丝式执行器以最小的努力插入、移除和重新定位多个电极。为了验证微驱动器的设计,我们对一只雄性猕猴进行了 EM 耦合 fMRI 研究。结果验证了微驱动器可以在 MRI 过程中使用,即使在 7 特斯拉(7T)环境中,也可以最小化成像伪影。微驱动器的未来应用包括神经元记录和靶向药物输送。我们提供计算机辅助设计(CAD)模板和零件清单,用于根据特定的研究需求修改和制造微驱动器。这些设计为制造用于神经科学研究的 MRI 兼容微驱动器提供了一种方便、经济有效的方法。