Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
Elife. 2022 Nov 10;11:e71876. doi: 10.7554/eLife.71876.
A wide range of techniques in neuroscience involve placing individual probes at precise locations in the brain. However, large-scale measurement and manipulation of the brain using such methods have been severely limited by the inability to miniaturize systems for probe positioning. Here, we present a fundamentally new, remote-controlled micropositioning approach composed of novel phase-change material-filled resistive heater micro-grippers arranged in an inchworm motor configuration. The microscopic dimensions, stability, gentle gripping action, individual electronic control, and high packing density of the grippers allow micrometer-precision independent positioning of many arbitrarily shaped probes using a single piezo actuator. This multi-probe single-actuator design significantly reduces the size and weight and allows for potential automation of microdrives. We demonstrate accurate placement of multiple electrodes into the rat hippocampus in vivo in acute and chronic preparations. Our robotic microdrive technology should therefore enable the scaling up of many types of multi-probe applications in neuroscience and other fields.
神经科学中的许多技术都涉及将单个探头精确放置在大脑的特定位置。然而,由于无法将用于探头定位的系统小型化,因此使用此类方法对大脑进行大规模测量和操作受到了严重限制。在这里,我们提出了一种全新的、遥控的微定位方法,该方法由排列在尺蠖电机结构中的新型相变材料填充的电阻式加热微夹爪组成。夹爪的微观尺寸、稳定性、温和的夹持动作、单独的电子控制以及高的封装密度允许使用单个压电致动器对许多任意形状的探头进行微米级精度的独立定位。这种多探头单执行器设计显著减小了尺寸和重量,并允许微驱动器的潜在自动化。我们在急性和慢性制剂中演示了将多个电极准确地放置到大鼠海马体中的情况。因此,我们的机器人微驱动器技术应该能够在神经科学和其他领域中扩展多种多探头应用。