Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA.
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
J Neurosci Methods. 2024 Jul;407:110133. doi: 10.1016/j.jneumeth.2024.110133. Epub 2024 Apr 6.
High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality.
We developed a compact MRI-compatible stereotaxis suitable for a variety of NHP species (Macaca mulatta, Macaca fascicularis, and Cebus apella) that allows multimodal alignment through technique-specific fiducial markers.
With the express purpose of compatibility with clinically available MRI, CT, and PET systems, the frame is no larger than a human head, while allowing for imaging NHPs in the supinated position. This design requires no marker implantation, special software, or additional knowledge other than the operation of a common large animal stereotaxis.
We demonstrated the applicability of this 3D-printable apparatus across a diverse set of experiments requiring presurgical planning: 1) We demonstrate the accuracy of the fiducial system through a within-MRI cannula insertion and subcortical injection of a viral vector. 2) We also demonstrated accuracy of multimodal (MRI and CT) alignment and coordinate transfer to guide a surgical robot electrode implantation for deep-brain electrophysiology.
The computer-aided design files and engineering drawings are publicly available, with the modular design allowing for low cost and manageable manufacturing.
在非人类灵长类动物(NHPs)中进行高精度神经外科靶向手术通常需要使用非侵入性神经影像学技术(MRI、CT、PET)进行术前解剖学映射,以便将个体解剖坐标转换为手术立体定向仪器。鉴于这些成像技术产生的组织对比度各不相同,因此将基于成像的坐标精确对准手术器械可能会很繁琐。带有不透射线基准标记的 MRI 兼容立体定向术提供了一种简单可靠的解决方案,但现有的商业选择不适合最大限度地提高成像质量的贴合式头部线圈。
我们开发了一种紧凑的 MRI 兼容立体定向术,适用于多种 NHP 物种(猕猴、食蟹猴和白脸卷尾猴),允许通过特定于技术的基准标记进行多模态对准。
为了与临床可用的 MRI、CT 和 PET 系统兼容,该框架不超过人头大小,同时允许 NHPs 处于旋后位置进行成像。这种设计不需要标记植入、特殊软件或除了普通大动物立体定向术的操作之外的其他额外知识。
我们展示了这种可 3D 打印设备在需要术前规划的各种实验中的适用性:1)我们通过在 MRI 套管内进行的插入和皮质下注射病毒载体,证明了基准系统的准确性。2)我们还展示了多模态(MRI 和 CT)对准和坐标转换的准确性,以指导手术机器人电极植入进行深部脑电生理学。
计算机辅助设计文件和工程图纸都是公开的,模块化设计允许低成本和易于管理的制造。