Suppr超能文献

拟南芥高亲和钾转运体 HAK51 的转运和调控机制研究进展。

Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K+ transporter HAK51.

机构信息

Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Campus de Espinardo, 30100 Murcia, Spain.

Instituto de Bioquímica Vegetal y Fotosíntesis, cic-Cartuja, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Sevilla, Spain.

出版信息

Plant Physiol. 2021 Apr 23;185(4):1860-1874. doi: 10.1093/plphys/kiab028.

Abstract

The high-affinity K+ transporter HAK5 from Arabidopsis (Arabidopsis thaliana) is essential for K+ acquisition and plant growth at low micromolar K+ concentrations. Despite its functional relevance in plant nutrition, information about functional domains of HAK5 is scarce. Its activity is enhanced by phosphorylation via the AtCIPK23/AtCBL1-9 complex. Based on the recently published three-dimensionalstructure of the bacterial ortholog KimA from Bacillus subtilis, we have modeled AtHAK5 and, by a mutational approach, identified residues G67, Y70, G71, D72, D201, and E312 as essential for transporter function. According to the structural model, residues D72, D201, and E312 may bind K+, whereas residues G67, Y70, and G71 may shape the selective filter for K+, which resembles that of K+shaker-like channels. In addition, we show that phosphorylation of residue S35 by AtCIPK23 is required for reaching maximal transport activity. Serial deletions of the AtHAK5 C-terminus disclosed the presence of an autoinhibitory domain located between residues 571 and 633 together with an AtCIPK23-dependent activation domain downstream of position 633. Presumably, autoinhibition of AtHAK5 is counteracted by phosphorylation of S35 by AtCIPK23. Our results provide a molecular model for K+ transport and describe CIPK-CBL-mediated regulation of plant HAK transporters.

摘要

拟南芥(Arabidopsis thaliana)高亲和力 K+转运蛋白 HAK5 对于在低微摩尔 K+浓度下获取 K+和植物生长是必不可少的。尽管它在植物营养中具有功能相关性,但关于 HAK5 功能域的信息却很少。其活性通过 AtCIPK23/AtCBL1-9 复合物的磷酸化增强。基于最近发表的枯草芽孢杆菌细菌直系同源物 KimA 的三维结构,我们对 AtHAK5 进行了建模,并通过突变方法鉴定了残基 G67、Y70、G71、D72、D201 和 E312 对转运蛋白功能至关重要。根据结构模型,残基 D72、D201 和 E312 可能结合 K+,而残基 G67、Y70 和 G71 可能塑造 K+的选择性过滤器,类似于 K+shaker 样通道。此外,我们还表明,AtCIPK23 对 S35 残基的磷酸化对于达到最大运输活性是必需的。AtHAK5 C 端的串联缺失揭示了存在一个位于残基 571 和 633 之间的自动抑制结构域,以及位于位置 633 下游的 AtCIPK23 依赖性激活结构域。推测 AtHAK5 的自动抑制作用被 AtCIPK23 对 S35 的磷酸化抵消。我们的结果提供了 K+转运的分子模型,并描述了 CIPK-CBL 介导的植物 HAK 转运蛋白的调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf4b/8133630/529b29891992/kiab028f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验