Suppr超能文献

拟南芥 HAK5 在低钾供应下作为 PMF 驱动的高亲和力钾转运体起作用。

Arabidopsis HAK5 under low K availability operates as PMF powered high-affinity K transporter.

机构信息

Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany.

Institute of Education and Student Affairs, University of Münster, Münster, Germany.

出版信息

Nat Commun. 2024 Oct 3;15(1):8558. doi: 10.1038/s41467-024-52963-6.

Abstract

Plants can survive in soils of low micromolar potassium (K) concentrations. Root K intake is accomplished by the K channel AKT1 and KUP/HAK/KT type high-affinity K transporters. Arabidopsis HAK5 mutants impaired in low K acquisition have been identified already more than two decades ago, the molecular mechanism, however, is still a matter of debate also because of lack of direct measurements of HAK5-mediated K currents. When we expressed AtHAK5 in Xenopus oocytes together with CBL1/CIPK23, no inward currents were elicited in sufficient K media. Under low K and inward-directed proton motive force (PMF), the inward K current increased indicating that HAK5 energetically couples the uphill transport of K to the downhill flux of H. At extracellular K concentrations above 25 μM, the initial rise in current was followed by a concentration-graded inactivation. When we replaced Tyr450 in AtHAK5 to Ala the K affinity strongly decreased, indicating that AtHAK5 position Y450 holds a key for K sensing and transport. When the soil K concentration drops toward the range that thermodynamically cannot be covered by AKT1, the AtHAK5 K/H symporter progressively takes over K nutrition. Therefore, optimizing K use efficiency of crops, HAK5 could be key for low K tolerant agriculture.

摘要

植物可以在低毫摩尔浓度的钾(K)土壤中生存。根 K 的摄取是通过 K 通道 AKT1 和 KUP/HAK/KT 型高亲和力 K 转运体来完成的。二十多年前,已经鉴定出拟南芥 HAK5 突变体在低 K 摄取方面受损,然而,其分子机制仍然存在争议,这也是由于缺乏对 HAK5 介导的 K 电流的直接测量。当我们将 AtHAK5 与 CBL1/CIPK23 在非洲爪蟾卵母细胞中表达时,在足够的 K 介质中没有诱发内向电流。在低 K 和内向质子动力势(PMF)下,内向 K 电流增加,表明 HAK5 在能量上使 K 的向上运输与 H 的向下流动偶联。当细胞外 K 浓度高于 25 μM 时,电流的初始上升后会发生浓度分级失活。当我们将 AtHAK5 中的 Tyr450 突变为 Ala 时,K 的亲和力大大降低,表明 AtHAK5 的位置 Y450 对于 K 的感应和运输起着关键作用。当土壤 K 浓度下降到 AKT1 无法覆盖的热力学范围时,AtHAK5 的 K/H 同向转运体逐渐接管 K 营养。因此,优化作物的 K 使用效率,HAK5 可能是低 K 耐受农业的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6834/11450230/6ab90c84cd80/41467_2024_52963_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验