Johansson Adam, Balter James M, Cao Yue
Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
Med Phys. 2021 May;48(5):2521-2527. doi: 10.1002/mp.14786. Epub 2021 Mar 24.
Gastrointestinal motion patterns such as peristalsis and segmental contractions can alter the shape and position of the stomach and intestines with respect to other irradiated organs during radiation therapy. Unfortunately, these deformations are concealed by conventional four-dimensional (4D)-MRI techniques, which were developed to visualize respiratory motion by binning acquired data into respiratory motion states without considering the phases of GI motion. We present a method to reconstruct breathing-compensated images showing the phases of periodic gastric motion and study the effect of this motion on regional anatomical structures.
Sixty-seven DCE-MRI examinations were performed on patients undergoing MRI simulation for hepatocellular carcinoma using a golden-angle stack-of-stars sequence that collected 2000 radial spokes over 5 min. The collected data were reconstructed using a method with integrated respiratory motion correction into a time series of 3D image volumes without visible breathing motion. From this series, a gastric motion signal was extracted by temporal filtering of time-intensity curves in the stomach. Using this motion signal, breathing-corrected back-projection images were sorted according to the gastric phase and reconstructed into 21 gastric motion state images showing the phases of gastric motion.
Reconstructed image volumes showed gastric motion states clearly with no visible breathing motion or related artifacts. The mean frequency of the gastric motion signal was 3 cycles/min with a standard deviation of 0.27 cycles/min.
Periodic gastrointestinal motion can be visualized without confounding respiratory motion using the presented GI 4D MRI technique. GI 4D MRIs may help define internal target volumes for treatment planning, aid in planning organ at risk volume definition, or support motion model development for gastrointestinal motion tracking algorithms for real-time MR-guided radiation therapy.
在放射治疗期间,诸如蠕动和节段性收缩等胃肠运动模式会改变胃和肠道相对于其他受照射器官的形状和位置。不幸的是,这些变形被传统的四维(4D)MRI技术所掩盖,传统4D-MRI技术是通过将采集的数据按呼吸运动状态进行分箱来可视化呼吸运动,而没有考虑胃肠运动的相位。我们提出了一种重建呼吸补偿图像的方法,该图像显示周期性胃运动的相位,并研究这种运动对局部解剖结构的影响。
对接受肝细胞癌MRI模拟的患者进行了67次动态对比增强MRI检查,使用金角星状堆叠序列,在5分钟内采集2000条径向辐条数据。使用一种集成了呼吸运动校正的方法将采集到的数据重建为一系列无明显呼吸运动的3D图像体积的时间序列。从该序列中,通过对胃内时间-强度曲线进行时间滤波来提取胃运动信号。利用该运动信号,根据胃相位对呼吸校正的反投影图像进行分类,并重建为21幅显示胃运动相位的胃运动状态图像。
重建的图像体积清晰地显示了胃运动状态,没有明显的呼吸运动或相关伪影。胃运动信号的平均频率为3次/分钟,标准差为0.27次/分钟。
使用所提出的胃肠四维MRI技术,可以在不混淆呼吸运动的情况下可视化周期性胃肠运动。胃肠四维MRI可能有助于在治疗计划中定义内部靶区体积,辅助计划危及器官体积的定义,或支持用于实时MR引导放射治疗的胃肠运动跟踪算法的运动模型开发。