Suppr超能文献

腹部 DCE-MRI 重建与可变形运动校正用于肝脏灌注定量。

Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification.

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Med Phys. 2018 Oct;45(10):4529-4540. doi: 10.1002/mp.13118. Epub 2018 Aug 31.

Abstract

PURPOSE

Abdominal dynamic contrast-enhanced (DCE) MRI suffers from motion-induced artifacts that can blur images and distort contrast-agent uptake curves. For liver perfusion analysis, image reconstruction with rigid-body motion correction (RMC) can restore distorted portal-venous input functions (PVIF) to higher peak amplitudes. However, RMC cannot correct for liver deformation during breathing. We present a reconstruction algorithm with deformable motion correction (DMC) that enables correction of breathing-induced deformation in the whole abdomen.

METHODS

Raw data from a golden-angle stack-of-stars gradient-echo sequence were collected for 54 DCE-MRI examinations of 31 patients. For each examination, a respiratory motion signal was extracted from the data and used to reconstruct 21 breathing states from inhale to exhale. The states were aligned with deformable image registration to the end-exhale state. Resulting deformation fields were used to correct back-projection images before reconstruction with view sharing. Images with DMC were compared to uncorrected images and images with RMC.

RESULTS

DMC significantly increased the PVIF peak amplitude compared to uncorrected images (P << 0.01, mean increase: 8%) but not compared to RMC. The increased PVIF peak amplitude significantly decreased estimated portal-venous perfusion in the liver (P << 0.01, mean decrease: 8 ml/(100 ml·min)). DMC also removed artifacts in perfusion maps at the liver edge and reduced blurring of liver tumors for some patients.

CONCLUSIONS

DCE-MRI reconstruction with DMC can restore motion-distorted uptake curves in the abdomen and remove motion artifacts from reconstructed images and parameter maps but does not significantly improve perfusion quantification in the liver compared to RMC.

摘要

目的

腹部动态对比增强(DCE)MRI 受到运动伪影的影响,这些伪影会导致图像模糊和对比剂摄取曲线变形。对于肝脏灌注分析,使用刚体运动校正(RMC)进行图像重建可以将变形的门静脉输入函数(PVIF)恢复到更高的峰值幅度。然而,RMC 无法纠正呼吸期间的肝脏变形。我们提出了一种带有可变形运动校正(DMC)的重建算法,能够校正整个腹部的呼吸引起的变形。

方法

从 31 名患者的 54 次 DCE-MRI 检查中采集黄金角度堆叠星状梯度回波序列的原始数据。对于每次检查,从数据中提取呼吸运动信号,并使用该信号从吸气到呼气重建 21 个呼吸状态。这些状态与呼气末状态对齐,使用可变形图像配准。使用所得的变形场在重建前对反向投影图像进行校正,采用视图共享。将具有 DMC 的图像与未校正的图像和具有 RMC 的图像进行比较。

结果

与未校正的图像相比,DMC 显著增加了 PVIF 峰值幅度(P << 0.01,平均增加 8%),但与 RMC 相比则没有显著增加。增加的 PVIF 峰值幅度显著降低了肝脏的门静脉灌注估计值(P << 0.01,平均降低 8 ml/(100 ml·min))。DMC 还消除了肝脏边缘灌注图中的伪影,并减少了一些患者肝脏肿瘤的模糊。

结论

DCE-MRI 重建时使用 DMC 可以恢复腹部运动变形的摄取曲线,从重建图像和参数图中去除运动伪影,但与 RMC 相比,对肝脏的灌注定量没有显著改善。

相似文献

1
Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification.
Med Phys. 2018 Oct;45(10):4529-4540. doi: 10.1002/mp.13118. Epub 2018 Aug 31.
2
Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.
Magn Reson Med. 2018 Mar;79(3):1345-1353. doi: 10.1002/mrm.26782. Epub 2017 Jun 15.
3
Respiratory motion compensation using data binning in dynamic contrast enhanced golden-angle radial MRI.
Magn Reson Imaging. 2020 Jul;70:115-125. doi: 10.1016/j.mri.2020.03.011. Epub 2020 Apr 28.
4
3D nonrigid motion correction for quantitative assessment of hepatic lesions in DCE-MRI.
Magn Reson Med. 2019 Nov;82(5):1753-1766. doi: 10.1002/mrm.27867. Epub 2019 Jun 22.
5
Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach.
J Nucl Med. 2018 Sep;59(9):1474-1479. doi: 10.2967/jnumed.117.203943. Epub 2018 Jan 25.
6
Sliding motion compensated low-rank plus sparse (SMC-LS) reconstruction for high spatiotemporal free-breathing liver 4D DCE-MRI.
Magn Reson Imaging. 2019 May;58:56-66. doi: 10.1016/j.mri.2019.01.012. Epub 2019 Jan 15.
7
Reduction of Motion Artifacts in the Recovery of Undersampled DCE MR Images Using Data Binning and L+S Decomposition.
Biomed Res Int. 2019 Apr 17;2019:6139785. doi: 10.1155/2019/6139785. eCollection 2019.
9
Improving dynamic contrast-enhanced MRI of the lung using motion-weighted sparse reconstruction: Initial experiences in patients.
Magn Reson Imaging. 2020 May;68:36-44. doi: 10.1016/j.mri.2020.01.013. Epub 2020 Jan 27.

引用本文的文献

1
Compressed Sensing-Accelerated Free-Breathing Liver MRI at 7 T.
NMR Biomed. 2025 Jun;38(6):e70047. doi: 10.1002/nbm.70047.
5
Real-time prediction of stomach motions based upon gastric contraction and breathing models.
Phys Med Biol. 2022 Dec 16;68(1). doi: 10.1088/1361-6560/ac9660.
6
Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning.
Med Phys. 2022 Sep;49(9):6110-6119. doi: 10.1002/mp.15822. Epub 2022 Jul 6.
9
Gastrointestinal 4D MRI with respiratory motion correction.
Med Phys. 2021 May;48(5):2521-2527. doi: 10.1002/mp.14786. Epub 2021 Mar 24.

本文引用的文献

2
Modeling of Normal Tissue Complications Using Imaging and Biomarkers After Radiation Therapy for Hepatocellular Carcinoma.
Int J Radiat Oncol Biol Phys. 2018 Feb 1;100(2):335-343. doi: 10.1016/j.ijrobp.2017.10.005.
3
Rigid-body motion correction of the liver in image reconstruction for golden-angle stack-of-stars DCE MRI.
Magn Reson Med. 2018 Mar;79(3):1345-1353. doi: 10.1002/mrm.26782. Epub 2017 Jun 15.
4
Efficient, Convergent SENSE MRI Reconstruction for Nonperiodic Boundary Conditions via Tridiagonal Solvers.
IEEE Trans Comput Imaging. 2017 Mar;3(1):11-21. doi: 10.1109/TCI.2016.2626999. Epub 2016 Nov 8.
6
Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging.
Magn Reson Med. 2017 Aug;78(2):565-576. doi: 10.1002/mrm.26392. Epub 2016 Sep 9.
7
Local and Global Function Model of the Liver.
Int J Radiat Oncol Biol Phys. 2016 Jan 1;94(1):181-188. doi: 10.1016/j.ijrobp.2015.09.044. Epub 2015 Oct 9.
9
XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.
Magn Reson Med. 2016 Feb;75(2):775-88. doi: 10.1002/mrm.25665. Epub 2015 Mar 25.
10
Motion correction strategies for integrated PET/MR.
J Nucl Med. 2015 Feb;56(2):261-9. doi: 10.2967/jnumed.114.146787. Epub 2015 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验