Xu Yang, Wu Zebin, Chanussot Jocelyn, Wei Zhihui
IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):4747-4760. doi: 10.1109/TNNLS.2019.2957527. Epub 2020 Oct 30.
Hyperspectral image (HSI) super-resolution is a hot topic in remote sensing and computer vision. Recently, tensor analysis has been proven to be an efficient technology for HSI image processing. However, the existing tensor-based methods of HSI super-resolution are not able to capture the high-order correlations in HSI. In this article, we propose to learn a high-order coupled tensor ring (TR) representation for HSI super-resolution. The proposed method first tensorizes the HSI to be estimated into a high-order tensor in which multiscale spatial structures and the original spectral structure are represented. Then, a coupled TR representation model is proposed to fuse the low-resolution HSI (LR-HSI) and high-resolution multispectral image (HR-MSI). In the proposed model, some latent core tensors in TR of the LR-HSI and the HR-MSI are shared, and we use the relationship between the spectral core tensors to reconstruct the HSI. In addition, the graph-Laplacian regularization is introduced to the spectral core tensors to preserve the spectral information. To enhance the robustness of the proposed model, Frobenius norm regularizations are introduced to the other core tensors. Experimental results on both synthetic and real data sets show that the proposed method achieves the state-of-the-art super-resolution performance.
高光谱图像(HSI)超分辨率是遥感和计算机视觉领域的一个热门话题。最近,张量分析已被证明是一种用于HSI图像处理的有效技术。然而,现有的基于张量的HSI超分辨率方法无法捕捉HSI中的高阶相关性。在本文中,我们提出学习一种用于HSI超分辨率的高阶耦合张量环(TR)表示。所提出的方法首先将待估计的HSI张量化为一个高阶张量,其中表示了多尺度空间结构和原始光谱结构。然后,提出了一种耦合TR表示模型,以融合低分辨率HSI(LR-HSI)和高分辨率多光谱图像(HR-MSI)。在所提出的模型中,LR-HSI和HR-MSI的TR中的一些潜在核心张量是共享的,并且我们利用光谱核心张量之间的关系来重建HSI。此外,将图拉普拉斯正则化引入到光谱核心张量中以保留光谱信息。为了增强所提出模型的鲁棒性,将弗罗贝尼乌斯范数正则化引入到其他核心张量中。在合成数据集和真实数据集上的实验结果表明,所提出的方法实现了当前最优的超分辨率性能。