Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.
PLoS One. 2021 Feb 17;16(2):e0246181. doi: 10.1371/journal.pone.0246181. eCollection 2021.
The 2019 emergence of, SARS-CoV-2 has tragically taken an immense toll on human life and far reaching impacts on society. There is a need to identify effective antivirals with diverse mechanisms of action in order to accelerate preclinical development. This study focused on five of the most established drug target proteins for direct acting small molecule antivirals: Nsp5 Main Protease, Nsp12 RNA-dependent RNA polymerase, Nsp13 Helicase, Nsp16 2'-O methyltransferase and the S2 subunit of the Spike protein. A workflow of solvent mapping and free energy calculations was used to identify and characterize favorable small-molecule binding sites for an aromatic pharmacophore (benzene). After identifying the most favorable sites, calculated ligand efficiencies were compared utilizing computational fragment screening. The most favorable sites overall were located on Nsp12 and Nsp16, whereas the most favorable sites for Nsp13 and S2 Spike had comparatively lower ligand efficiencies relative to Nsp12 and Nsp16. Utilizing fragment screening on numerous possible sites on Nsp13 helicase, we identified a favorable allosteric site on the N-terminal zinc binding domain (ZBD) that may be amenable to virtual or biophysical fragment screening efforts. Recent structural studies of the Nsp12:Nsp13 replication-transcription complex experimentally corroborates ligand binding at this site, which is revealed to be a functional Nsp8:Nsp13 protein-protein interaction site in the complex. Detailed structural analysis of Nsp13 ZBD conformations show the role of induced-fit flexibility in this ligand binding site and identify which conformational states are associated with efficient ligand binding. We hope that this map of over 200 possible small-molecule binding sites for these drug targets may be of use for ongoing discovery, design, and drug repurposing efforts. This information may be used to prioritize screening efforts or aid in the process of deciphering how a screening hit may bind to a specific target protein.
2019 年,SARS-CoV-2 的出现给人类生命带来了巨大的损失,并对社会产生了深远的影响。为了加速临床前开发,需要确定具有不同作用机制的有效抗病毒药物。本研究集中于直接作用小分子抗病毒药物的五个最成熟的药物靶标蛋白:Nsp5 主要蛋白酶、Nsp12 RNA 依赖性 RNA 聚合酶、Nsp13 解旋酶、Nsp16 2'-O 甲基转移酶和 Spike 蛋白的 S2 亚基。采用溶剂作图和自由能计算的工作流程来鉴定和表征芳香族药效团(苯)的有利小分子结合位点。在确定最有利的位点后,利用计算片段筛选比较计算的配体效率。总体而言,最有利的位点位于 Nsp12 和 Nsp16 上,而 Nsp13 和 S2 Spike 的最有利位点相对于 Nsp12 和 Nsp16 的配体效率较低。利用片段筛选对 Nsp13 解旋酶上的许多可能位点进行筛选,我们在 N 端锌结合域(ZBD)上鉴定出一个有利的变构结合位点,该位点可能适合虚拟或生物物理片段筛选。最近对 Nsp12:Nsp13 复制-转录复合物的结构研究实验证实了该位点的配体结合,该位点在复合物中被揭示为功能性 Nsp8:Nsp13 蛋白-蛋白相互作用位点。对 Nsp13 ZBD 构象的详细结构分析表明,诱导契合灵活性在该配体结合位点中的作用,并确定哪些构象状态与有效的配体结合相关。我们希望这些药物靶标超过 200 个可能的小分子结合位点图谱对正在进行的发现、设计和药物再利用工作有用。该信息可用于优先筛选工作或帮助阐明筛选命中物如何与特定靶标蛋白结合。