Centre for Medicines Discovery, University of Oxford, Oxford, UK.
Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK.
Nat Commun. 2021 Aug 11;12(1):4848. doi: 10.1038/s41467-021-25166-6.
There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.
目前,针对导致全球 COVID-19 大流行的 SARS-CoV-2 病毒,还缺乏有效的治疗药物。SARS-CoV-2 非结构蛋白 13(NSP13)因其高度保守的序列和在病毒复制中的重要作用,已被确定为抗病毒药物的靶点。结构分析揭示了 NSP13 上的两个“可成药”口袋,它们是整个 SARS-CoV-2 蛋白质组中最保守的位点之一。在这里,我们展示了以 APO 形式以及在存在磷酸盐和非水解型 ATP 类似物的情况下,SARS-CoV-2 NSP13 的晶体结构。对这些结构的比较揭示了构象变化的细节,这些变化为解旋酶机制和可能的抑制模式提供了线索。为了确定药物开发的起点,我们对 NSP13 进行了晶体学片段筛选。该筛选在 52 个数据集的 65 个片段命中,为基于结构的新型抗病毒药物的开发开辟了道路。