Cai Wei, Yurchak Stephanie, Cole Diana J, Cowen Laura L E
Department of Mathematics and Statistics University of Victoria Victoria British Columbia Canada.
School of Mathematics, Statistics and Actuarial Science University of Kent Canterbury UK.
Ecol Evol. 2021 Jan 13;11(3):1131-1149. doi: 10.1002/ece3.7035. eCollection 2021 Feb.
Capture-recapture experiments are conducted to estimate population parameters such as population size, survival rates, and capture rates. Typically, individuals are captured and given unique tags, then recaptured over several time periods with the assumption that these tags are not lost. However, for some populations, tag loss cannot be assumed negligible. The Jolly-Seber tag loss model is used when the no-tag-loss assumption is invalid. Further, the model has been extended to incorporate group heterogeneity, which allows parameters to vary by group membership. Many mark-recapture models become overparameterized resulting in the inability to independently estimate parameters. This is known as parameter redundancy.We investigate parameter redundancy using symbolic methods. Because of the complex structure of some tag loss models, the methods cannot always be applied directly. Instead, we develop a simple combination of parameters that can be used to investigate parameter redundancy in tag loss models.The incorporation of tag loss and group heterogeneity into Jolly-Seber models does not result in further parameter redundancies. Furthermore, using hybrid methods we studied the parameter redundancy caused by data through case studies and generated tag histories with different parameter values.Smaller capture and survival rates are found to cause parameter redundancy in these models. These problems resolve when applied to large populations.
捕获-再捕获实验用于估计种群参数,如种群大小、存活率和捕获率。通常,个体被捕获并被赋予唯一的标签,然后在几个时间段内进行再捕获,前提是这些标签不会丢失。然而,对于一些种群,不能假定标签丢失可以忽略不计。当无标签丢失假设无效时,使用乔利-西伯标签丢失模型。此外,该模型已扩展到纳入群体异质性,这使得参数可以因群体成员身份而异。许多标记-再捕获模型会出现参数过度参数化的情况,导致无法独立估计参数。这被称为参数冗余。我们使用符号方法研究参数冗余。由于一些标签丢失模型的结构复杂,这些方法并不总是能直接应用。相反,我们开发了一种简单的参数组合,可用于研究标签丢失模型中的参数冗余。将标签丢失和群体异质性纳入乔利-西伯模型不会导致进一步的参数冗余。此外,我们通过案例研究使用混合方法研究了由数据导致的参数冗余,并生成了具有不同参数值的标签历史。发现较小的捕获率和存活率会导致这些模型中的参数冗余。当应用于大型种群时,这些问题会得到解决。