Cole Diana J, Morgan Byron J T, Catchpole Edward A, Hubbard Ben A
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent, CT2 7NF, England.
Biom J. 2012 Jul;54(4):507-23. doi: 10.1002/bimj.201100210. Epub 2012 Jun 12.
We provide a definitive guide to parameter redundancy in mark-recovery models, indicating, for a wide range of models, in which all the parameters are estimable, and in which models they are not. For these parameter-redundant models, we identify the parameter combinations that can be estimated. Simple, general results are obtained, which hold irrespective of the duration of the studies. We also examine the effect real data have on whether or not models are parameter redundant, and show that results can be robust even with very sparse data. Covariates, as well as time- or age-varying trends, can be added to models to overcome redundancy problems. We show how to determine, without further calculation, whether or not parameter-redundant models are still parameter redundant after the addition of covariates or trends.
我们提供了一份关于标记重捕模型中参数冗余的权威指南,指出了一系列所有参数均可估计的模型,以及参数不可估计的模型。对于这些参数冗余模型,我们确定了可以估计的参数组合。得到了简单、通用的结果,这些结果与研究持续时间无关。我们还研究了实际数据对模型是否参数冗余的影响,并表明即使数据非常稀疏,结果也可能是稳健的。可以将协变量以及随时间或年龄变化的趋势添加到模型中,以克服冗余问题。我们展示了如何在不进行进一步计算的情况下,确定添加协变量或趋势后参数冗余模型是否仍然参数冗余。