Suppr超能文献

确定模型的参数结构。

Determining the parametric structure of models.

机构信息

School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT27NF, UK.

出版信息

Math Biosci. 2010 Nov;228(1):16-30. doi: 10.1016/j.mbs.2010.08.004. Epub 2010 Aug 25.

Abstract

In this paper we develop a comprehensive approach to determining the parametric structure of models. This involves considering whether a model is parameter redundant or not and investigating model identifiability. The approach adopted makes use of exhaustive summaries, quantities that uniquely define the model. We review and generalise previous work on evaluating the symbolic rank of an appropriate derivative matrix to detect parameter redundancy, and then develop further tools for use within this framework, based on a matrix decomposition. Complex models, where the symbolic rank is difficult to calculate, may be simplified structurally using reparameterisation and by finding a reduced-form exhaustive summary. The approach of the paper is illustrated using examples from ecology, compartment modelling and Bayes networks. This work is topical as models in the biosciences and elsewhere are becoming increasingly complex.

摘要

在本文中,我们提出了一种综合方法来确定模型的参数结构。这涉及到考虑模型是否存在参数冗余以及研究模型的可识别性。所采用的方法利用了详尽的总结,这些总结量唯一地定义了模型。我们回顾和推广了以前评估适当导数矩阵的符号秩以检测参数冗余的工作,然后基于矩阵分解为该框架开发了进一步的工具。对于符号秩难以计算的复杂模型,可以通过重新参数化和找到简化的详尽总结来简化其结构。本文的方法通过生态学、 compartment 建模和贝叶斯网络的例子来说明。这项工作具有现实意义,因为生物科学和其他领域的模型变得越来越复杂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验