Department of Cardiology, Functional and Ultrasound Diagnostics of N.V. Sklifosovsky Institute for Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RU.
Department of Physiology, School of Biomedical Sciences; University of Melbourne, Melbourne, AU.
Glob Heart. 2021 Jan 4;16(1):1. doi: 10.5334/gh.837.
Until recently, Russia did not utilize noninvasive fractional flow reserve (FFR) assessment. We developed an automated algorithm for noninvasive assessment of FFR based on a one-dimensional (1D) mathematical modeling.
The research aims to evaluate the diagnostic accuracy of this algorithm.
The study enrolled 80 patients: 16 of them underwent 64-slice computed tomography - included retrospectively, 64 - prospectively, with a 640-slice CT scan. Specialists processed CT images and evaluated noninvasive FFR. Ischemia was confirmed if FFR < 0.80 and disproved if FFR ≥ 0.80. The prospective group of patients was hospitalized for invasive FFR assessment as a reference standard. If ischemic, patients underwent stent implantation. In the retrospective group, patients already had invasive FFR values.Statistical analysis was performed using GraphPad Prism 8. We compared two methods using a Bland-Altman plot and per-vessel ROC curve analysis. Considering the abnormality of distribution by the Kolmogorov-Smirnov test, we have used Spearman's rank correlation coefficient.
During data processing, three patients of the retrospective and 46 patients of the prospective group were excluded. The sensitivity of our method was 66.67% (95% CI: 46.71-82.03); the specificity was 78.95% (95% CI: 56.67-91.49), p = 0.0052, in the per-vessel analysis. In per-patient analysis, the sensitivity was 69.57% (95% CI: 49.13-84.40); the specificity was 87.50% (95% CI: 52.91-99.36), p = 0.0109. The area under the ROC curve in the per-vessel analysis was 77.52% (95% CI: 66.97-88.08), p < 0.0001.
The obtained indices of sensitivity, specificity, PPV, and NPV are, in general, comparable to those in other studies. Moreover, the noninvasive values of FFR yielded a high correlation coefficient with the invasive values. However, the AUC was not high enough, 77.52 (95% CI: 66.97-88.08), p < 0.0001. The discrepancy is probably attributed to the initial data heterogeneity and low statistical power.
直到最近,俄罗斯还没有利用无创性分流量储备(FFR)评估。我们开发了一种基于一维(1D)数学建模的无创 FFR 评估自动化算法。
本研究旨在评估该算法的诊断准确性。
该研究纳入 80 例患者:其中 16 例进行了 64 层螺旋 CT-回顾性纳入,64 例前瞻性纳入,采用 640 层 CT 扫描。专家处理 CT 图像并评估无创 FFR。如果 FFR < 0.80,则确认存在缺血,如果 FFR ≥ 0.80,则排除缺血。前瞻性组患者因缺血住院进行有创 FFR 评估作为参考标准。如果存在缺血,患者接受支架植入。在回顾性组中,患者已经有了有创 FFR 值。采用 GraphPad Prism 8 进行统计分析。我们使用 Bland-Altman 图和血管内 ROC 曲线分析比较了两种方法。考虑到分布的异常性,我们使用了斯皮尔曼等级相关系数。
在数据处理过程中,回顾性组的 3 例患者和前瞻性组的 46 例患者被排除在外。我们的方法的敏感性为 66.67%(95%CI:46.71-82.03);特异性为 78.95%(95%CI:56.67-91.49),p = 0.0052,在血管内分析中。在患者内分析中,敏感性为 69.57%(95%CI:49.13-84.40);特异性为 87.50%(95%CI:52.91-99.36),p = 0.0109。血管内 ROC 曲线下面积为 77.52%(95%CI:66.97-88.08),p < 0.0001。
获得的敏感性、特异性、PPV 和 NPV 等指标一般与其他研究相当。此外,FFR 的无创值与有创值具有很高的相关性。然而,AUC 不够高,为 77.52(95%CI:66.97-88.08),p < 0.0001。差异可能归因于初始数据异质性和低统计效力。