Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
J Biol Inorg Chem. 2021 May;26(2-3):265-281. doi: 10.1007/s00775-021-01850-2. Epub 2021 Feb 17.
In vitro, reductive mobilization of ferritin iron using suitable electron transfer mediators has emerged as a possible mechanism to mimic the iron release process, in vivo. Nature uses flavins as electron relay molecules for important biological oxidation and oxygenation reactions. Therefore, the current work utilizes three flavin analogues: riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which differ in size and charge but have similar redox potentials, to relay electron from nicotinamide adenine dinucleotide (NADH) to ferritin mineral core. Of these, the smallest/neutral analogue, RF, released more iron (~ three fold) in comparison to the larger and negatively charged FMN and FAD. Although iron mobilization got marred during the initial stages under aerobic conditions, but increased with a greater slope at the later stages of the reaction kinetics, which gets inhibited by superoxide dismutase, consistent with the generation of O in situ. The initial step, i.e., interaction of flavins with NADH played critical role in the iron release process. Overall, the flavin-mediated reductive iron mobilization from ferritins occurred via two competitive pathways, involving the reduced form of flavins either alone (anaerobic condition) or in combination with O intermediate (aerobic condition). Moreover, faster iron release was observed for ferritins from Mycobacterium tuberculosis than from bullfrog, indicating the importance of protein nanocage and the advantages they provide to the respective organisms. Therefore, these structure-reactivity studies of flavins with NADH/O holds significance in ferritin iron release, bioenergetics, O-based cellular toxicity and may be potentially exploited in the treatment of methemoglobinemia. Smaller sized/neutral flavin analogue, riboflavin (RF) exhibits faster reactivity towards both NADH and O generating more amount of O and releases higher amount of iron from different ferritins, compared to its larger sized/negatively charged derivatives such as FMN and FAD.
在体外,使用合适的电子转移介质还原动员铁蛋白铁已成为模拟体内铁释放过程的一种可能机制。自然界使用黄素作为电子中继分子,用于重要的生物氧化和氧化反应。因此,目前的工作利用三种黄素类似物:核黄素(RF)、黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),它们在大小和电荷上有所不同,但具有相似的氧化还原电位,可将电子从烟酰胺腺嘌呤二核苷酸(NADH)传递到铁蛋白矿物核心。在这些类似物中,最小/中性类似物 RF 比较大且带负电荷的 FMN 和 FAD 释放出更多的铁(约三倍)。尽管在有氧条件下的初始阶段铁动员受到阻碍,但在反应动力学的后期阶段,铁动员随着斜率的增加而增加,这被超氧化物歧化酶抑制,与原位生成的 O 一致。初始步骤,即黄素与 NADH 的相互作用,在铁释放过程中起着关键作用。总的来说,黄素介导的铁蛋白铁还原动员是通过两种竞争途径发生的,涉及黄素的还原形式单独(无氧条件)或与 O 中间体(有氧条件)结合。此外,从结核分枝杆菌的铁蛋白中观察到更快的铁释放,而从牛蛙的铁蛋白中则较慢,这表明蛋白质纳米笼的重要性及其为各自生物体提供的优势。因此,这些黄素与 NADH/O 的结构-反应研究在铁蛋白铁释放、生物能量学、基于 O 的细胞毒性方面具有重要意义,并且可能在治疗高铁血红蛋白血症方面得到潜在利用。与较大尺寸/负电荷衍生物如 FMN 和 FAD 相比,较小尺寸/中性黄素类似物核黄素(RF)对 NADH 和 O 的反应更快,产生更多量的 O,并从不同的铁蛋白中释放出更多量的铁。