Xiao Yongcheng, He Dong, Peng Weimin, Chen Songbo, Liu Jing, Chen Huqiang, Xin Shixuan, Bai Yongxiao
Graphene Institute of Lanzhou University-Fangda Carbon Co., Ltd., Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10336-10348. doi: 10.1021/acsami.1c00451. Epub 2021 Feb 18.
As a tradeoff between supercapacitors and batteries, lithium-ion capacitors (LICs) are designed to deliver high energy density, high power density, and long cycling stability. Owing to the different energy storage mechanisms of capacitor-type cathodes and battery-type anodes, engineering and fabricating LICs with excellent energy density and power density remains a challenge. Herein, to alleviate the mismatch between the anode and cathode, we ingeniously designed a graphene with oxidized-polydopamine coating (LG@DA1) and N,P codoped porous foam structure activated carbon (CPC750) as the battery-type anode and capacitor-type cathode, respectively. Using oxidized-polydopamine to stabilize the structure of graphene, increase layer spacing, and modify the surface chemical property, the LG@DA1 anode delivers a maximum capacity of 1100 mAh g as well as good cycling stability. With N,P codoping and a porous foam structure, the CPC750 cathode exhibits a large effective specific surface area and a high specific capacity of 87.5 mAh g. In specific, the present LG@DA1//CPC750 LIC showcases a high energy density of 170.6 Wh kg and superior capacity retention of 93.5% after 2000 cycles. The success of the present LIC can be attributed to the structural stability design, surface chemistry regulation, and enhanced utilization of effective active sites of the anode and cathode; thus, this strategy can be applied to improve the performance of LICs.
作为超级电容器和电池之间的一种折衷方案,锂离子电容器(LIC)旨在提供高能量密度、高功率密度和长循环稳定性。由于电容型阴极和电池型阳极的储能机制不同,设计和制造具有优异能量密度和功率密度的LIC仍然是一项挑战。在此,为了缓解阳极和阴极之间的不匹配,我们巧妙地设计了一种具有氧化聚多巴胺涂层的石墨烯(LG@DA1)和氮、磷共掺杂的多孔泡沫结构活性炭(CPC750),分别作为电池型阳极和电容型阴极。通过氧化聚多巴胺稳定石墨烯结构、增加层间距并改变表面化学性质,LG@DA1阳极提供了1100 mAh g的最大容量以及良好的循环稳定性。通过氮、磷共掺杂和多孔泡沫结构,CPC750阴极展现出大的有效比表面积和87.5 mAh g的高比容量。具体而言,当前的LG@DA1//CPC750 LIC展示了170.6 Wh kg的高能量密度以及在2000次循环后93.5%的优异容量保持率。当前LIC的成功可归因于阳极和阴极的结构稳定性设计、表面化学调控以及有效活性位点的利用率提高;因此,该策略可应用于改善LIC的性能。