Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca 37007, Spain.
Department of Abiotic Stress, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca 37008, Spain.
Plant Physiol. 2021 May 27;186(1):285-296. doi: 10.1093/plphys/kiab072.
Thioredoxin reductases control the redox state of thioredoxins (Trxs)-ubiquitous proteins that regulate a spectrum of enzymes by dithiol-disulfide exchange reactions. In most organisms, Trx is reduced by NADPH via a thioredoxin reductase flavoenzyme (NTR), but in oxygenic photosynthetic organisms, this function can also be performed by an iron-sulfur ferredoxin (Fdx)-dependent thioredoxin reductase (FTR) that links light to metabolic regulation. We have recently found that some cyanobacteria, such as the thylakoid-less Gloeobacter and the ocean-dwelling green oxyphotobacterium Prochlorococcus, lack NTR and FTR but contain a thioredoxin reductase flavoenzyme (formerly tentatively called deeply-rooted thioredoxin reductase or DTR), whose electron donor remained undefined. Here, we demonstrate that Fdx functions in this capacity and report the crystallographic structure of the transient complex between the plant-type Fdx1 and the thioredoxin reductase flavoenzyme from Gloeobacter violaceus. Thereby, our data demonstrate that this cyanobacterial enzyme belongs to the Fdx flavin-thioredoxin reductase (FFTR) family, originally described in the anaerobic bacterium Clostridium pasteurianum. Accordingly, the enzyme hitherto termed DTR is renamed FFTR. Our experiments further show that the redox-sensitive peptide CP12 is modulated in vitro by the FFTR/Trx system, demonstrating that FFTR functionally substitutes for FTR in light-linked enzyme regulation in Gloeobacter. Altogether, we demonstrate the FFTR is spread within the cyanobacteria phylum and propose that, by substituting for FTR, it connects the reduction of target proteins to photosynthesis. Besides, the results indicate that FFTR acquisition constitutes a mechanism of evolutionary adaptation in marine phytoplankton such as Prochlorococcus that live in low-iron environments.
硫氧还蛋白还原酶控制硫氧还蛋白(Trx)的氧化还原状态——Trx 是一种通过二硫键-巯基交换反应调节一系列酶的普遍存在的蛋白质。在大多数生物体中,Trx 通过硫氧还蛋白还原酶黄素酶(NTR)被 NADPH 还原,但在产氧光合作用生物中,这种功能也可以由依赖铁硫铁氧还蛋白(Fdx)的硫氧还蛋白还原酶(FTR)完成,它将光与代谢调节联系起来。我们最近发现,一些蓝细菌,如类囊体缺失的 Gloeobacter 和海洋生绿氧光合细菌 Prochlorococcus,缺乏 NTR 和 FTR,但含有一种硫氧还蛋白还原酶黄素酶(以前暂称为深根硫氧还蛋白还原酶或 DTR),其电子供体仍未定义。在这里,我们证明了 Fdx 在这种情况下起作用,并报告了植物型 Fdx1 与来自 Gloeobacter violaceus 的硫氧还蛋白还原酶黄素酶之间瞬态复合物的晶体结构。因此,我们的数据表明,这种蓝细菌酶属于 Fdx 黄素-硫氧还蛋白还原酶(FFTR)家族,最初在厌氧细菌 Clostridium pasteurianum 中描述。因此,该酶以前称为 DTR 的酶现在更名为 FFTR。我们的实验进一步表明,FFTR/Trx 系统在体外调节氧化还原敏感肽 CP12,证明 FFTR 在 Gloeobacter 中光连接的酶调节中功能性替代 FTR。总之,我们证明 FFTR 在蓝细菌门中广泛存在,并提出它通过替代 FTR 将靶蛋白的还原与光合作用联系起来。此外,这些结果表明,FFTR 的获得是生活在低铁环境中的海洋浮游植物(如 Prochlorococcus)等海洋浮游植物进化适应的一种机制。