Ojwang Dickson O, Svensson Mikael, Njel Christian, Mogensen Ronnie, Menon Ashok S, Ericsson Tore, Häggström Lennart, Maibach Julia, Brant William R
Department of Chemistry-Ångström Laboratory, Ångström Advanced Battery Centre, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.
Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10054-10063. doi: 10.1021/acsami.0c22032. Epub 2021 Feb 18.
The high-theoretical-capacity (∼170 mAh/g) Prussian white (PW), NaFe[Fe(CN)]·HO, is one of the most promising candidates for Na-ion batteries on the cusp of commercialization. However, it has limitations such as high variability of reported stable practical capacity and cycling stability. A key factor that has been identified to affect the performance of PW is water content in the structure. However, the impact of airborne moisture exposure on the electrochemical performance of PW and the chemical mechanisms leading to performance decay have not yet been explored. Herein, we for the first time systematically studied the influence of humidity on the structural and electrochemical properties of monoclinic hydrated (M-PW) and rhombohedral dehydrated (R-PW) Prussian white. It is identified that moisture-driven capacity fading proceeds via two steps, first by sodium from the bulk material reacting with moisture at the surface to form sodium hydroxide and partial oxidation of Fe to Fe. The sodium hydroxide creates a basic environment at the surface of the PW particles, leading to decomposition to Na[Fe(CN)] and iron oxides. Although the first process leads to loss of capacity, which can be reversed, the second stage of degradation is irreversible. Over time, both processes lead to the formation of a passivating surface layer, which prevents both reversible and irreversible capacity losses. This study thus presents a significant step toward understanding the large performance variations presented in the literature for PW. From this study, strategies aimed at limiting moisture-driven degradation can be designed and their efficacy assessed.
理论比容量较高(约170 mAh/g)的普鲁士白(PW,NaFe[Fe(CN)]·HO)是钠离子电池最有希望实现商业化的候选材料之一。然而,它存在一些局限性,比如报道的稳定实际容量和循环稳定性变化较大。已确定影响PW性能的一个关键因素是其结构中的含水量。然而,空气中的湿气暴露对PW电化学性能的影响以及导致性能衰减的化学机制尚未得到研究。在此,我们首次系统地研究了湿度对单斜晶系水合(M-PW)和菱面体脱水(R-PW)普鲁士白的结构和电化学性能的影响。研究发现,湿度导致的容量衰减分两步进行,首先是 bulk material中的钠与表面的湿气反应生成氢氧化钠,以及Fe部分氧化为Fe。氢氧化钠在PW颗粒表面营造了一个碱性环境,导致其分解为Na[Fe(CN)]和铁氧化物。虽然第一步导致容量损失,且这种损失可以逆转,但降解的第二阶段是不可逆的。随着时间的推移,这两个过程都会导致形成一个钝化表面层,从而防止可逆和不可逆的容量损失。因此,这项研究朝着理解文献中报道的PW性能巨大差异迈出了重要一步。通过这项研究,可以设计出旨在限制湿度驱动降解的策略并评估其效果。