He Yueyue, Dreyer Sören L, Ting Yin-Ying, Ma Yuan, Hu Yang, Goonetilleke Damian, Tang Yushu, Diemant Thomas, Zhou Bei, Kowalski Piotr M, Fichtner Maximilian, Hahn Horst, Aghassi-Hagmann Jasmin, Brezesinski Torsten, Breitung Ben, Ma Yanjiao
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428, Jülich, Germany.
Angew Chem Int Ed Engl. 2024 Feb 12;63(7):e202315371. doi: 10.1002/anie.202315371. Epub 2023 Dec 8.
The high-entropy approach is applied to monoclinic Prussian White (PW) Na-ion cathodes to address the issue of unfavorable multilevel phase transitions upon electrochemical cycling, leading to poor stability and capacity decay. A series of Mn-based samples with up to six metal species sharing the N-coordinated positions was synthesized. The material of composition Na Mn Fe Ni Cu Co Cd [Fe(CN) ] □ ⋅ 1.09H O was found to exhibit superior cyclability over medium/low-entropy and conventional single-metal PWs. We also report, to our knowledge for the first time, that a high-symmetry crystal structure may be advantageous for high-entropy PWs during battery operation. Computational comparisons of the formation enthalpy demonstrate that the compositionally less complex materials are prone to phase transitions, which negatively affect cycling performance. Based on data from complementary characterization techniques, an intrinsic mechanism for the stability improvement of the disordered PW structure upon Na insertion/extraction is proposed, namely the dual effect of suppression of phase transitions and mitigation of gas evolution.
高熵方法被应用于单斜晶系普鲁士白(PW)钠离子阴极,以解决电化学循环过程中不利的多级相变问题,该问题会导致稳定性差和容量衰减。合成了一系列具有多达六种金属物种共享N配位位置的锰基样品。发现组成为Na Mn Fe Ni Cu Co Cd [Fe(CN) ] □ ⋅ 1.09H O的材料比中/低熵和传统单金属PW表现出更好的循环性能。据我们所知,我们还首次报道了高对称晶体结构在电池运行期间可能对高熵PW有利。形成焓的计算比较表明,组成较简单的材料容易发生相变,这对循环性能有负面影响。基于互补表征技术的数据,提出了一种在Na插入/脱出时无序PW结构稳定性提高的内在机制,即抑制相变和减轻气体析出的双重作用。