Chang Ji, Kang Yu, Zheng Wei Xing, Cao Yang, Li Zerui, Lv Wenjun, Wang Xing-Mou
IEEE Trans Cybern. 2022 Aug;52(8):8073-8087. doi: 10.1109/TCYB.2021.3049609. Epub 2022 Jul 19.
Lithology identification plays an essential role in formation characterization and reservoir exploration. As an emerging technology, intelligent logging lithology identification has received great attention recently, which aims to infer the lithology type through the well-logging curves using machine-learning methods. However, the model trained on the interpreted logging data is not effective in predicting new exploration well due to the data distribution discrepancy. In this article, we aim to train a lithology identification model for the target well using a large amount of source-labeled logging data and a small amount of target-labeled data. The challenges of this task lie in three aspects: 1) the distribution misalignment; 2) the data divergence; and 3) the cost limitation. To solve these challenges, we propose a novel active adaptation for logging lithology identification (AALLI) framework that combines active learning (AL) and domain adaptation (DA). The contributions of this article are three-fold: 1) the domain-discrepancy problem in intelligent logging lithology identification is first investigated in this article, and a novel framework that incorporates AL and DA into lithology identification is proposed to handle the problem; 2) we design a discrepancy-based AL and pseudolabeling (PL) module and an instance importance weighting module to query the most uncertain target information and retain the most confident source information, which solves the challenges of cost limitation and distribution misalignment; and 3) we develop a reliability detecting module to improve the reliability of target pseudolabels, which, together with the discrepancy-based AL and PL module, solves the challenge of data divergence. Extensive experiments on three real-world well-logging datasets demonstrate the effectiveness of the proposed method compared to the baselines.
岩性识别在地层表征和储层勘探中起着至关重要的作用。作为一项新兴技术,智能测井岩性识别近年来受到了广泛关注,其旨在通过机器学习方法利用测井曲线推断岩性类型。然而,由于数据分布差异,在已解释的测井数据上训练的模型在预测新的勘探井时效果不佳。在本文中,我们旨在使用大量源标记测井数据和少量目标标记数据为目标井训练一个岩性识别模型。这项任务的挑战在于三个方面:1)分布不一致;2)数据差异;3)成本限制。为了解决这些挑战,我们提出了一种新颖的用于测井岩性识别的主动自适应(AALLI)框架,该框架结合了主动学习(AL)和域自适应(DA)。本文的贡献有三个方面:1)本文首次研究了智能测井岩性识别中的域差异问题,并提出了一种将主动学习和域自适应纳入岩性识别的新颖框架来处理该问题;2)我们设计了一个基于差异的主动学习和伪标签(PL)模块以及一个实例重要性加权模块,以查询最不确定的目标信息并保留最可靠的源信息,从而解决了成本限制和分布不一致的挑战;3)我们开发了一个可靠性检测模块来提高目标伪标签的可靠性,该模块与基于差异的主动学习和伪标签模块一起解决了数据差异的挑战。在三个真实世界的测井数据集上进行的大量实验表明,与基线方法相比,所提出的方法是有效的。