Suppr超能文献

基于Inception模块的双向门控循环单元网络(Inception-BiGRU)通过测井数据预测缺失数据。

The Bidirectional Gated Recurrent Unit Network Based on the Inception Module (Inception-BiGRU) Predicts the Missing Data by Well Logging Data.

作者信息

Sun Youzhuang, Zhang Junhua, Yu Zhengjun, Zhang Yongan, Liu Zhen

机构信息

College of Earth Science and Technology, China University of Petroleum, Qingdao 266555, China.

Shengli Oilfield Geophysical Research Institute, Dongying 257000, China.

出版信息

ACS Omega. 2023 Jul 23;8(30):27710-27724. doi: 10.1021/acsomega.3c03677. eCollection 2023 Aug 1.

Abstract

As a key bridge between logging and seismic data, acoustic (AC) logging data is of great significance for reservoir lithology, physical property analysis, and quantitative evaluation, and completing AC logging data can help to obtain high-resolution inversion profiles, which can provide a reliable basis for reservoir geological interpretation. However, in the actual mining process, the AC logging data is always missing due to instrument failure and borehole collapse in many areas, and re-logging is not only expensive but also difficult to achieve. However, the AC data can be completed by other obtained logging parameters. In this paper, a bidirectional gated recurrent unit network based on the Inception module is developed to complete the AC logging data. The Inception module extracts the logging data features and inputs the extracted logging data features into the bidirectional gated recurrent unit network, which can fully consider the characteristics of the current data and the data before and after the logging sequence to complete the missing AC logging data. Experimental results show that the hybrid model (Inception-BiGRU) has higher accuracy than traditional and widely used series forecasting models (gated recurrent unit network and long short-term memory network), and this method also provides a new idea for the completion of AC logging data.

摘要

作为测井与地震数据之间的关键桥梁,声波(AC)测井数据对于储层岩性、物性分析及定量评价具有重要意义,完善AC测井数据有助于获得高分辨率反演剖面,可为储层地质解释提供可靠依据。然而,在实际开采过程中,许多地区由于仪器故障和井壁坍塌等原因,AC测井数据常常缺失,重新测井不仅成本高昂,而且难以实现。不过,AC数据可通过其他获取的测井参数来补齐。本文开发了一种基于Inception模块的双向门控循环单元网络来补齐AC测井数据。Inception模块提取测井数据特征,并将提取的测井数据特征输入到双向门控循环单元网络中,该网络能够充分考虑当前数据以及测井序列前后数据的特征,以补齐缺失的AC测井数据。实验结果表明,混合模型(Inception-BiGRU)比传统且广泛使用的序列预测模型(门控循环单元网络和长短期记忆网络)具有更高的精度,且该方法也为AC测井数据的补齐提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98f7/10399194/fa9c5aa806a8/ao3c03677_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验