Jiang Shuwen, Carroll Luke, Mariotti Michele, Hägglund Per, Davies Michael J
Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
Redox Biol. 2021 May;41:101874. doi: 10.1016/j.redox.2021.101874. Epub 2021 Jan 23.
Cross-links formed within and between proteins are a major cause of protein dysfunction, and are postulated to drive the accumulation of protein aggregates in some human pathologies. Cross-links can be formed from multiple residues and can be reversible (usually sulfur-sulfur bonds) or irreversible (typically carbon-carbon or carbon-heteroatom bonds). Disulfides formed from oxidation of two Cys residues are widespread, with these formed both deliberately, via enzymatic reactions, or as a result of unintended oxidation reactions. We have recently demonstrated that new protein-glutathione mixed disulfides can be formed through oxidation of a protein disulfide to a thiosulfinate, and subsequent reaction of this species with glutathione. Here we investigate whether similar reactions occur between an oxidized protein disulfide, and a Cys residues on a second protein, to give novel protein cross-links. Singlet oxygen (O)-mediated oxidation of multiple proteins (α-lactalbumin, lysozyme, beta-2-microglobulin, C-reactive protein), and subsequent incubation with the Cys-containing protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH), generates inter-protein cross-links as detected by SDS-PAGE, immunoblotting and mass spectrometry (MS). The cross-link yield is dependent on the O concentration, the presence of the original protein disulfide bond, and the free Cys on GAPDH. MS with O-labeling has allowed identification of the residues involved in some cases (e.g. Cys25 from the Cys25-Cys80 disulfide in beta-2-microglobulin, with Cys149 or Cys244 of GAPDH). The formation of these cross-links results in a loss of GAPDH enzymatic activity. These data provide 'proof-of-concept' for a novel mechanism of protein cross-link formation which may help rationalize the accumulation of cross-linked proteins in multiple human pathologies.
蛋白质内部及之间形成的交联是蛋白质功能障碍的主要原因,据推测在某些人类疾病中会促使蛋白质聚集体的积累。交联可由多个残基形成,且可以是可逆的(通常是硫 - 硫键)或不可逆的(典型的是碳 - 碳或碳 - 杂原子键)。由两个半胱氨酸残基氧化形成的二硫键很常见,这些二硫键既可以通过酶促反应有意形成,也可以是意外氧化反应的结果。我们最近证明,蛋白质二硫键氧化为亚磺酸盐,随后该物种与谷胱甘肽反应,可以形成新的蛋白质 - 谷胱甘肽混合二硫键。在这里,我们研究氧化的蛋白质二硫键与第二种蛋白质上的半胱氨酸残基之间是否会发生类似反应,以产生新的蛋白质交联。单线态氧(O)介导的多种蛋白质(α - 乳白蛋白、溶菌酶、β2 - 微球蛋白、C反应蛋白)的氧化,以及随后与含半胱氨酸的蛋白质甘油醛 - 3 - 磷酸脱氢酶(GAPDH)孵育,通过SDS - PAGE、免疫印迹和质谱(MS)检测到蛋白质间交联的产生。交联产率取决于O浓度、原始蛋白质二硫键的存在以及GAPDH上的游离半胱氨酸。带有O标记的MS已能够在某些情况下鉴定出参与交联的残基(例如β2 - 微球蛋白中Cys25 - Cys80二硫键中的Cys25,与GAPDH的Cys149或Cys244)。这些交联的形成导致GAPDH酶活性丧失。这些数据为蛋白质交联形成的新机制提供了“概念验证”,这可能有助于解释多种人类疾病中交联蛋白质的积累。