文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物有机应用的光敏单重态氧 (O) 工具包:定制 O 生成以用于 DNA 和蛋白质标记、靶向和生物传感。

A Photosensitized Singlet Oxygen (O) Toolbox for Bio-Organic Applications: Tailoring O Generation for DNA and Protein Labelling, Targeting and Biosensing.

机构信息

Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium.

出版信息

Molecules. 2022 Jan 25;27(3):778. doi: 10.3390/molecules27030778.


DOI:10.3390/molecules27030778
PMID:35164045
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8838016/
Abstract

Singlet oxygen (O) is the excited state of ground, triplet state, molecular oxygen (O). Photosensitized O has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of O discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of O, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring O generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor O generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.

摘要

单线态氧(O)是基态、三重态、分子氧(O)的激发态。作为活性氧(ROS)之一的光敏 O 已被广泛研究,其负责细胞成分(蛋白质、DNA、脂质)的损伤。另一方面,其生成已被应用于有机合成,以及光动力疗法治疗各种形式的癌症。本综述的目的是突出 O 的多功能性,讨论过去几十年中报道的主要生物有机应用,这些应用依赖于其生成。在简要介绍光敏 O 的生成后,我们将描述涉及伴随这种 ROS 不受控制、非特异性生成的生物相关损伤的主要方面。然后,我们将更详细地讨论一系列具有 O 生成的生物学应用,包括蛋白质和 DNA 标记、交联和生物传感。最后,我们将强调可用于定制 O 生成的方法,以完成所提出的生物有机转化,同时避免与这种反应性物质不受控制生成相关的附带损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/a6fb7d2a23b4/molecules-27-00778-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/5692fde85ea6/molecules-27-00778-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/53370a9cd8ab/molecules-27-00778-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/5e4285f2ccc5/molecules-27-00778-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/32ece0380626/molecules-27-00778-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/808737b5ede2/molecules-27-00778-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/1bbc58b2cce8/molecules-27-00778-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/ffc1808c3d93/molecules-27-00778-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/427fc8bad119/molecules-27-00778-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/9770b5385634/molecules-27-00778-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/bbf251fa2186/molecules-27-00778-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/aa33dcef6c08/molecules-27-00778-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/0bfbc48ea6aa/molecules-27-00778-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/92bb50eb3dcf/molecules-27-00778-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/7f3aaee50f64/molecules-27-00778-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/f3665b5bbe37/molecules-27-00778-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/05cc4aede9b9/molecules-27-00778-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/9b2d0a99cf2c/molecules-27-00778-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/8cd3e1343586/molecules-27-00778-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/a6fb7d2a23b4/molecules-27-00778-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/5692fde85ea6/molecules-27-00778-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/53370a9cd8ab/molecules-27-00778-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/5e4285f2ccc5/molecules-27-00778-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/32ece0380626/molecules-27-00778-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/808737b5ede2/molecules-27-00778-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/1bbc58b2cce8/molecules-27-00778-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/ffc1808c3d93/molecules-27-00778-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/427fc8bad119/molecules-27-00778-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/9770b5385634/molecules-27-00778-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/bbf251fa2186/molecules-27-00778-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/aa33dcef6c08/molecules-27-00778-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/0bfbc48ea6aa/molecules-27-00778-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/92bb50eb3dcf/molecules-27-00778-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/7f3aaee50f64/molecules-27-00778-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/f3665b5bbe37/molecules-27-00778-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/05cc4aede9b9/molecules-27-00778-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/9b2d0a99cf2c/molecules-27-00778-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/8cd3e1343586/molecules-27-00778-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/232b/8838016/a6fb7d2a23b4/molecules-27-00778-g018.jpg

相似文献

[1]
A Photosensitized Singlet Oxygen (O) Toolbox for Bio-Organic Applications: Tailoring O Generation for DNA and Protein Labelling, Targeting and Biosensing.

Molecules. 2022-1-25

[2]
Methods to Unravel Pathways of Reactive Oxygen Species in the Photodynamic Inactivation of Bacteria.

Methods Mol Biol. 2021

[3]
Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy.

J Biophotonics. 2016-12

[4]
Singlet oxygen generating activity of an electron donor connecting porphyrin photosensitizer can be controlled by DNA.

J Phys Chem B. 2013-10-21

[5]
Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death.

Molecules. 2023-5-14

[6]
Singlet oxygen species and systemic lupus erythematosus: a brief review.

J Immunoassay Immunochem. 2019

[7]
Intracellular modulation of excited-state dynamics in a chromophore dyad: differential enhancement of photocytotoxicity targeting cancer cells.

Angew Chem Int Ed Engl. 2015-3-24

[8]
Singlet Oxygen and Protochlorophyllide Detection in Arabidopsis thaliana.

Methods Mol Biol. 2021

[9]
Dynamics of singlet oxygen generation by DNA-binding photosensitizers.

J Phys Chem B. 2012-2-23

[10]
Luminescence spectroscopy of singlet oxygen enables monitoring of oxygen consumption in biological systems consisting of fatty acids.

Phys Chem Chem Phys. 2013-6-6

引用本文的文献

[1]
Anti-Biofilm Effect of Hybrid Nanocomposite Functionalized with Erythrosine B on Due to Photodynamic Inactivation.

Molecules. 2024-8-19

[2]
Chemical Insights into Oxidative and Nitrative Modifications of DNA.

Int J Mol Sci. 2023-10-16

[3]
Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation.

ACS Omega. 2023-9-11

[4]
Cellular Damage of Bacteria Attached to Senescent Phytoplankton Cells as a Result of the Transfer of Photochemically Produced Singlet Oxygen: A Review.

Microorganisms. 2023-6-13

[5]
-N-Methylpyridinium Pyrenes: Impact of Positive Charge on ds-DNA/RNA and Protein Recognition, Photo-Induced Bioactivity, and Intracellular Localisation.

Pharmaceutics. 2022-11-17

[6]
The Journey of 1-Keto-1,2,3,4-Tetrahydrocarbazole Based Fluorophores: From Inception to Implementation.

J Fluoresc. 2022-11

本文引用的文献

[1]
Quickly evolving near-infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment.

View (Beijing). 2022-5

[2]
Hydrolysis of 5-methylfuran-2-yl to 2,5-dioxopentanyl allows for stable bio-orthogonal proximity-induced ligation.

Commun Chem. 2021-10-22

[3]
Nanobody-targeted photodynamic therapy for the treatment of feline oral carcinoma: a step towards translation to the veterinary clinic.

Nanophotonics. 2021-8-2

[4]
Highly-controllable drug release from core cross-linked singlet oxygen-responsive nanoparticles for cancer therapy.

RSC Adv. 2020-5-27

[5]
Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid-Photosensitizer Conjugates for Photodynamic Therapy.

ACS Appl Bio Mater. 2020-1-21

[6]
Two-Dimensional Metalloporphyrinic Framework Nanosheet-Based Dual-Mechanism-Driven Ratiometric Electrochemiluminescent Biosensing of Protein Kinase Activity.

ACS Appl Bio Mater. 2021-2-15

[7]
Pyridinium Alkynylanthracenes as Sensitizers for Photodynamic Therapy.

Photochem Photobiol. 2022-1

[8]
Photoactivated Self-Disassembly of Multifunctional DNA Nanoflower Enables Amplified Autophagy Suppression for Low-Dose Photodynamic Therapy.

Small. 2021-12

[9]
Electrochemical biosensor based on singlet oxygen generated by molecular photosensitizers.

Anal Chim Acta. 2021-10-23

[10]
Singlet oxygen-based photoelectrochemical detection of DNA.

Biosens Bioelectron. 2022-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索