Sattar Abdul, Moazzam Uzair, Bashir Azmat Iqbal, Reza Ali, Latif Hamid, Usman Arslan, Amjad Raja Junaid, Mubshrah Ayesha, Nasir Abdullah
Department of Physics, COMSATS University Islamabad, Lahore Campus, Pakistan.
Faculty of Engineering and Applied Sciences, Department of Physics, Riphah International University Islamabad, Pakistan.
Nanotechnology. 2021 Mar 12;32(22). doi: 10.1088/1361-6528/abe789.
Since the discovery of graphene and other two-dimensional (2D) materials in recent years, heterostructures composed of multilayered 2D materials have attracted immense research interest. This is mainly due to the potential prospects of the heterostructures for basic and applied applications related to the emerging technology of energy-efficient optoelectronic devices. In particular, heterostructures of graphene with 2D materials of similar structure have been proposed to open up the band gap to tune the transport properties of graphene for a variety of technological applications. In this paper, we propose a heterostructure scheme of band-gap engineering and modification of the electronic band structure of graphene via the heterostructure of graphene-boron nitride (GBN) based on first-principles calculations. For a comparative analysis of the properties of the proposed GBN heterostructure, we employ Kohn-Sham density functional theory (DFT) using local density and generalized gradient approximations within Perdew-Burke-Ernzehof parameterization. To account for weak interlayer van der Waals interactions, we employ the semi-empirical dispersion-corrected DFT scheme of Grimme, called the DFT-D2 approximation. In the vertical stacking arrangement of boron-nitride-doped graphene with hexagonal boron nitride, we predict a band-gap opening of 1.12 eV which, to our knowledge, is the largest value attained for this kind of system. The impact of interlayer spacing on the band-gap opening arising from the interlayer coupling effect is also analyzed. The band-gap enhancement supports the widely proposed promise of GBN heterostructure in design of high-performance optoelectronic devices such as field-effect transistors for potential applications.
近年来,自从石墨烯和其他二维(2D)材料被发现以来,由多层二维材料组成的异质结构引起了极大的研究兴趣。这主要是由于异质结构在与节能光电器件新兴技术相关的基础和应用方面具有潜在前景。特别是,有人提出将石墨烯与结构相似的二维材料形成异质结构,以打开带隙,从而调节石墨烯的输运特性,用于各种技术应用。在本文中,我们基于第一性原理计算,提出了一种通过石墨烯 - 氮化硼(GBN)异质结构进行带隙工程和修饰石墨烯电子能带结构的异质结构方案。为了对所提出的GBN异质结构的性质进行对比分析,我们采用Kohn - Sham密度泛函理论(DFT),使用Perdew - Burke - Ernzehof参数化下的局域密度近似和广义梯度近似。为了考虑层间微弱的范德华相互作用,我们采用了Grimme的半经验色散校正DFT方案,即DFT - D2近似。在硼氮掺杂石墨烯与六方氮化硼的垂直堆叠排列中,我们预测带隙打开为1.12 eV,据我们所知,这是此类系统所达到的最大值。还分析了层间距对由层间耦合效应引起的带隙打开的影响。带隙增强支持了GBN异质结构在诸如用于潜在应用的场效应晶体管等高性能光电器件设计中被广泛提出的前景。