Oh Yoonju, Song Seunghyun, Bae Joonho
Department of Physics, Gachon University, Seongnum-si 13120, Gyeonggi-do, Republic of Korea.
Int J Mol Sci. 2024 Dec 6;25(23):13104. doi: 10.3390/ijms252313104.
The advent of two-dimensional (2D) materials and their capacity to form van der Waals (vdW) heterostructures has revolutionized numerous scientific fields, including electronics, optoelectronics, and energy storage. This paper presents a comprehensive investigation of bandgap engineering and band structure prediction in 2D vdW heterostructures utilizing density functional theory (DFT). By combining various 2D materials, such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides, and blue phosphorus, these heterostructures exhibit tailored properties that surpass those of individual components. Bandgap engineering represents an effective approach to addressing the limitations inherent in material properties, thereby providing enhanced functionalities for a range of applications, including transistors, photodetectors, and solar cells. Furthermore, this study discusses the current limitations and challenges associated with bandgap engineering in 2D heterostructures and highlights future prospects aimed at unlocking their full potential for advanced technological applications.
二维(2D)材料的出现及其形成范德华(vdW)异质结构的能力彻底改变了众多科学领域,包括电子学、光电子学和能量存储。本文利用密度泛函理论(DFT)对二维vdW异质结构中的带隙工程和能带结构预测进行了全面研究。通过结合各种二维材料,如石墨烯、六方氮化硼(h-BN)、过渡金属二卤化物和蓝磷,这些异质结构展现出超越单个组分的定制特性。带隙工程是解决材料性能固有局限性的有效方法,从而为包括晶体管、光电探测器和太阳能电池在内的一系列应用提供增强的功能。此外,本研究讨论了二维异质结构中带隙工程目前存在的局限性和挑战,并强调了旨在释放其在先进技术应用中的全部潜力的未来前景。