Bonnaire Tony, Decelle Aurélien, Aghanim Nabila
Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405 Orsay, France.
Université Paris-Saclay, TAU Team INRIA Saclay, CNRS, Laboratoire de Recherche en Informatique, 91190 Gif-sur-Yvette, France.
Phys Rev E. 2021 Jan;103(1-1):012105. doi: 10.1103/PhysRevE.103.012105.
We present a framework exploiting the cascade of phase transitions occurring during a simulated annealing of the expectation-maximization algorithm to cluster datasets with multiscale structures. Using the weighted local covariance, we can extract, a posteriori and without any prior knowledge, information on the number of clusters at different scales together with their size. We also study the linear stability of the iterative scheme to derive the threshold at which the first transition occurs and show how to approximate the next ones. Finally, we combine simulated annealing together with recent developments of regularized Gaussian mixture models to learn a principal graph from spatially structured datasets that can also exhibit many scales.
我们提出了一个框架,该框架利用期望最大化算法模拟退火过程中发生的级联相变来对具有多尺度结构的数据集进行聚类。使用加权局部协方差,我们可以在无需任何先验知识的情况下,事后提取不同尺度下聚类数量及其大小的信息。我们还研究了迭代方案的线性稳定性,以推导首次转变发生时的阈值,并展示如何近似后续的转变。最后,我们将模拟退火与正则化高斯混合模型的最新进展相结合,从空间结构化数据集中学习主图,这些数据集也可能呈现多种尺度。