Bonnaire Tony, Decelle Aurelien, Aghanim Nabila
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9119-9130. doi: 10.1109/TPAMI.2021.3124973. Epub 2022 Nov 7.
A regularized version of Mixture Models is proposed to learn a principal graph from a distribution of D-dimensional datapoints. In the particular case of manifold learning for ridge detection, we assume that the underlying structure can be modeled as a graph acting like a topological prior for the Gaussian clusters turning the problem into a maximum a posteriori estimation. Parameters of the model are iteratively estimated through an Expectation-Maximization procedure making the learning of the structure computationally efficient with guaranteed convergence for any graph prior in a polynomial time. We also embed in the formalism a natural way to make the algorithm robust to outliers of the pattern and heteroscedasticity of the manifold sampling coherently with the graph structure. The method uses a graph prior given by the minimum spanning tree that we extend using random sub-samplings of the dataset to take into account cycles that can be observed in the spatial distribution.
我们提出了一种混合模型的正则化版本,用于从D维数据点的分布中学习主图。在用于脊线检测的流形学习的特定情况下,我们假设基础结构可以建模为一个图,该图充当高斯聚类的拓扑先验,从而将问题转化为最大后验估计。通过期望最大化过程迭代估计模型参数,使得对于任何图先验,在多项式时间内学习结构在计算上是高效的,并且保证收敛。我们还在形式体系中嵌入了一种自然的方法,使算法对模式的异常值和流形采样的异方差具有鲁棒性,并且与图结构一致。该方法使用由最小生成树给出的图先验,我们通过数据集的随机子采样对其进行扩展,以考虑在空间分布中可以观察到的循环。