Suppr超能文献

天然存在的杂种聚酮化合物来自. 两种不同的生物合成途径

Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in .

机构信息

Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States.

出版信息

ACS Chem Biol. 2021 Feb 19;16(2):270-276. doi: 10.1021/acschembio.0c00982. Epub 2021 Feb 8.

Abstract

Nature has always been seemingly limitless in its ability to create new chemical entities. It provides vastly diverse natural compounds through a biomanufacturing process that involves myriads of biosynthetic machineries. Here we report a case of unusual formations of hybrid natural products that are derived from two distinct polyketide biosynthetic pathways, the NFAT-133 and conglobatin pathways, in ATCC 27456. Their chemical structures were determined by NMR spectroscopy, mass spectrometry, and chemical synthesis. Genome sequence analysis and gene inactivation experiments uncovered the biosynthetic gene cluster of conglobatin in . Biochemical studies of the recombinant thioesterase (TE) domain of the conglobatin polyketide synthase (PKS) as well as its S74A mutant revealed that the formation of these hybrid compounds requires an active TE domain. We propose that NFAT-133 can interfere with conglobatin biosynthesis by reacting with the TE-domain-bound intermediates in the conglobatin PKS assembly line to form hybrid NFAT-133/conglobatin products.

摘要

大自然似乎在创造新的化学实体方面具有无限的能力。它通过涉及无数生物合成机制的生物制造过程提供了极其多样化的天然化合物。在这里,我们报告了一个源自两种不同聚酮生物合成途径(NFAT-133 和 conglobatin 途径)的混合天然产物的异常形成的案例,该途径存在于 ATCC 27456 中。它们的化学结构通过 NMR 光谱、质谱和化学合成确定。基因组序列分析和基因失活实验揭示了 conglobatin 在 中的生物合成基因簇。对 congobatin 聚酮合酶(PKS)的重组硫酯酶(TE)结构域及其 S74A 突变体的生化研究表明,这些混合化合物的形成需要一个活性 TE 结构域。我们提出,NFAT-133 可以通过与 congobatin PKS 装配线上结合 TE 结构域的中间产物反应,干扰 congobatin 生物合成,从而形成 NFAT-133/conglobatin 混合产物。

相似文献

1
Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in .
ACS Chem Biol. 2021 Feb 19;16(2):270-276. doi: 10.1021/acschembio.0c00982. Epub 2021 Feb 8.
2
Modulation of Specialized Metabolite Production in Genetically Engineered .
ACS Chem Biol. 2021 Nov 19;16(11):2641-2650. doi: 10.1021/acschembio.1c00718. Epub 2021 Nov 1.
3
Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis.
J Am Chem Soc. 2013 Jul 24;135(29):10783-91. doi: 10.1021/ja4041362. Epub 2013 Jul 12.
5
Functional Studies and Revision of the NFAT-133/TM-123 Biosynthetic Pathway in .
ACS Chem Biol. 2022 Aug 19;17(8):2039-2045. doi: 10.1021/acschembio.2c00454. Epub 2022 Jul 29.
6
Iterative Mechanism of Macrodiolide Formation in the Anticancer Compound Conglobatin.
Chem Biol. 2015 Jun 18;22(6):745-54. doi: 10.1016/j.chembiol.2015.05.010.
7
Iterative-Acting Thioesterase from Polyketide Biosynthesis Accepts Diverse Nucleophilic Alcohols to Yield Oxazole-Containing Esters.
J Agric Food Chem. 2023 May 17;71(19):7459-7467. doi: 10.1021/acs.jafc.3c00548. Epub 2023 May 6.
8
Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in .
ACS Chem Biol. 2020 Dec 18;15(12):3217-3226. doi: 10.1021/acschembio.0c00775. Epub 2020 Dec 7.
9
Characterization of the Biosynthetic Gene Cluster and Shunt Products Yields Insights into the Biosynthesis of Balmoralmycin.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0120822. doi: 10.1128/aem.01208-22. Epub 2022 Nov 9.
10
Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides.
Angew Chem Int Ed Engl. 2017 Feb 6;56(7):1740-1745. doi: 10.1002/anie.201611371. Epub 2017 Jan 11.

引用本文的文献

1
Tailoring of Prematurely Released Polyketide Intermediates in Piericidin Biosynthesis.
J Nat Prod. 2025 Aug 22;88(8):1928-1935. doi: 10.1021/acs.jnatprod.5c00609. Epub 2025 Jul 27.
2
Modulation of Specialized Metabolite Production in Genetically Engineered .
ACS Chem Biol. 2021 Nov 19;16(11):2641-2650. doi: 10.1021/acschembio.1c00718. Epub 2021 Nov 1.
3
Identification and Biological Activity of NFAT-133 Congeners from .
J Nat Prod. 2021 Sep 24;84(9):2411-2419. doi: 10.1021/acs.jnatprod.1c00152. Epub 2021 Sep 14.

本文引用的文献

1
Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in .
ACS Chem Biol. 2020 Dec 18;15(12):3217-3226. doi: 10.1021/acschembio.0c00775. Epub 2020 Dec 7.
2
Conglobatins B-E: cytotoxic analogues of the C-symmetric macrodiolide conglobatin.
J Antibiot (Tokyo). 2020 Nov;73(11):756-765. doi: 10.1038/s41429-020-0332-3. Epub 2020 Jun 17.
3
Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis.
Nat Chem Biol. 2019 Aug;15(8):795-802. doi: 10.1038/s41589-019-0314-6. Epub 2019 Jul 15.
4
The secondary metabolite pactamycin with potential for pharmaceutical applications: biosynthesis and regulation.
Appl Microbiol Biotechnol. 2019 Jun;103(11):4337-4345. doi: 10.1007/s00253-019-09831-x. Epub 2019 Apr 25.
5
Dalmanol biosyntheses require coupling of two separate polyketide gene clusters.
Chem Sci. 2018 Nov 27;10(1):73-82. doi: 10.1039/c8sc03697g. eCollection 2019 Jan 7.
6
Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum.
Appl Microbiol Biotechnol. 2018 Dec;102(24):10589-10601. doi: 10.1007/s00253-018-9375-9. Epub 2018 Oct 1.
7
A Highly Promiscuous ß-Ketoacyl-ACP Synthase (KAS) III-like Protein Is Involved in Pactamycin Biosynthesis.
ACS Chem Biol. 2017 Feb 17;12(2):362-366. doi: 10.1021/acschembio.6b01043. Epub 2017 Jan 12.
8
Interrogating the Tailoring Steps of Pactamycin Biosynthesis and Accessing New Pactamycin Analogues.
Chembiochem. 2016 Sep 2;17(17):1585-8. doi: 10.1002/cbic.201600261. Epub 2016 Jul 22.
9
NFAT-133 increases glucose uptake in L6 myotubes by activating AMPK pathway.
Eur J Pharmacol. 2015 Dec 15;769:117-26. doi: 10.1016/j.ejphar.2015.11.006. Epub 2015 Nov 11.
10
Iterative Mechanism of Macrodiolide Formation in the Anticancer Compound Conglobatin.
Chem Biol. 2015 Jun 18;22(6):745-54. doi: 10.1016/j.chembiol.2015.05.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验