Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States.
ACS Chem Biol. 2021 Feb 19;16(2):270-276. doi: 10.1021/acschembio.0c00982. Epub 2021 Feb 8.
Nature has always been seemingly limitless in its ability to create new chemical entities. It provides vastly diverse natural compounds through a biomanufacturing process that involves myriads of biosynthetic machineries. Here we report a case of unusual formations of hybrid natural products that are derived from two distinct polyketide biosynthetic pathways, the NFAT-133 and conglobatin pathways, in ATCC 27456. Their chemical structures were determined by NMR spectroscopy, mass spectrometry, and chemical synthesis. Genome sequence analysis and gene inactivation experiments uncovered the biosynthetic gene cluster of conglobatin in . Biochemical studies of the recombinant thioesterase (TE) domain of the conglobatin polyketide synthase (PKS) as well as its S74A mutant revealed that the formation of these hybrid compounds requires an active TE domain. We propose that NFAT-133 can interfere with conglobatin biosynthesis by reacting with the TE-domain-bound intermediates in the conglobatin PKS assembly line to form hybrid NFAT-133/conglobatin products.
大自然似乎在创造新的化学实体方面具有无限的能力。它通过涉及无数生物合成机制的生物制造过程提供了极其多样化的天然化合物。在这里,我们报告了一个源自两种不同聚酮生物合成途径(NFAT-133 和 conglobatin 途径)的混合天然产物的异常形成的案例,该途径存在于 ATCC 27456 中。它们的化学结构通过 NMR 光谱、质谱和化学合成确定。基因组序列分析和基因失活实验揭示了 conglobatin 在 中的生物合成基因簇。对 congobatin 聚酮合酶(PKS)的重组硫酯酶(TE)结构域及其 S74A 突变体的生化研究表明,这些混合化合物的形成需要一个活性 TE 结构域。我们提出,NFAT-133 可以通过与 congobatin PKS 装配线上结合 TE 结构域的中间产物反应,干扰 congobatin 生物合成,从而形成 NFAT-133/conglobatin 混合产物。