Suppr超能文献

核因子活化 T 细胞抑制剂 NFAT-133 的生物合成。

Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in .

出版信息

ACS Chem Biol. 2020 Dec 18;15(12):3217-3226. doi: 10.1021/acschembio.0c00775. Epub 2020 Dec 7.

Abstract

NFAT-133 is a -derived aromatic polyketide compound with immunosuppressive, antidiabetic, and antitrypanosomal activities. It inhibits transcription mediated by nuclear factor of activated T cells (NFAT), leading to the suppression of interleukin-2 expression and T cell proliferation. It also activates the AMPK pathway in L6 myotubes and increases glucose uptake. In addition to NFAT-133, a number of its congeners, e.g., panowamycins and benwamycins, have been identified. However, little is known about their modes of formation in the producing organisms. Through genome sequencing of ATCC 27456, gene inactivation, and genetic complementation experiments, the biosynthetic gene cluster of NFAT-133 and its congeners has been identified. The cluster contains a highly disordered genetic organization of type I modular polyketide synthase genes with several genes that are necessary for the formation of the aromatic core unit and tailoring processes. In addition, a number of new analogs of NFAT-133 were isolated and their chemical structures elucidated. It is suggested that the heptaketide NFAT-133 is derived from an octaketide intermediate, TM-123. The current study shows yet another unusual biosynthetic pathway involving a noncanonical polyketide synthase assembly line to produce a group of small molecules with valuable bioactivities.

摘要

NFAT-133 是一种衍生的芳香族聚酮化合物,具有免疫抑制、抗糖尿病和抗锥虫活性。它抑制由激活的 T 细胞核因子(NFAT)介导的转录,从而抑制白细胞介素-2 的表达和 T 细胞增殖。它还能激活 L6 肌管中的 AMPK 途径并增加葡萄糖摄取。除了 NFAT-133 外,还已经鉴定出其许多同系物,例如 panowamycins 和 benwamycins。然而,对于它们在产生生物体中的形成方式知之甚少。通过对 ATCC 27456 的基因组测序、基因失活和遗传互补实验,鉴定了 NFAT-133 及其同系物的生物合成基因簇。该簇包含一个高度无序的 I 型模块化聚酮合酶基因的遗传组织,其中有几个基因对于芳香核心单元和修饰过程的形成是必要的。此外,还分离出了一些 NFAT-133 的新类似物,并阐明了它们的化学结构。有人提出,七酮基 NFAT-133 来源于八酮基中间体 TM-123。本研究显示了另一种涉及非典型聚酮合酶装配线的不寻常生物合成途径,用于生产具有有价值生物活性的一组小分子。

相似文献

1
Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in .
ACS Chem Biol. 2020 Dec 18;15(12):3217-3226. doi: 10.1021/acschembio.0c00775. Epub 2020 Dec 7.
2
Functional Studies and Revision of the NFAT-133/TM-123 Biosynthetic Pathway in .
ACS Chem Biol. 2022 Aug 19;17(8):2039-2045. doi: 10.1021/acschembio.2c00454. Epub 2022 Jul 29.
3
Identification and Biological Activity of NFAT-133 Congeners from .
J Nat Prod. 2021 Sep 24;84(9):2411-2419. doi: 10.1021/acs.jnatprod.1c00152. Epub 2021 Sep 14.
4
Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in .
ACS Chem Biol. 2021 Feb 19;16(2):270-276. doi: 10.1021/acschembio.0c00982. Epub 2021 Feb 8.
10
Modulation of Specialized Metabolite Production in Genetically Engineered .
ACS Chem Biol. 2021 Nov 19;16(11):2641-2650. doi: 10.1021/acschembio.1c00718. Epub 2021 Nov 1.

引用本文的文献

1
Tailoring of Prematurely Released Polyketide Intermediates in Piericidin Biosynthesis.
J Nat Prod. 2025 Aug 22;88(8):1928-1935. doi: 10.1021/acs.jnatprod.5c00609. Epub 2025 Jul 27.
2
Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis.
Chembiochem. 2024 Apr 16;25(8):e202400056. doi: 10.1002/cbic.202400056. Epub 2024 Mar 11.
4
Functional Studies and Revision of the NFAT-133/TM-123 Biosynthetic Pathway in .
ACS Chem Biol. 2022 Aug 19;17(8):2039-2045. doi: 10.1021/acschembio.2c00454. Epub 2022 Jul 29.
5
Divergent Asymmetric Synthesis of Panowamycins, TM-135, and Veramycin F Using C-H Insertion with Donor/Donor Carbenes.
Angew Chem Int Ed Engl. 2022 Jun 20;61(25):e202203072. doi: 10.1002/anie.202203072. Epub 2022 Apr 25.
6
Modulation of Specialized Metabolite Production in Genetically Engineered .
ACS Chem Biol. 2021 Nov 19;16(11):2641-2650. doi: 10.1021/acschembio.1c00718. Epub 2021 Nov 1.
7
Identification and Biological Activity of NFAT-133 Congeners from .
J Nat Prod. 2021 Sep 24;84(9):2411-2419. doi: 10.1021/acs.jnatprod.1c00152. Epub 2021 Sep 14.
8
Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in .
ACS Chem Biol. 2021 Feb 19;16(2):270-276. doi: 10.1021/acschembio.0c00982. Epub 2021 Feb 8.

本文引用的文献

1
Whole-Genome Sequence of Shomura and Niida SF-557.
Microbiol Resour Announc. 2020 Apr 2;9(14):e01434-19. doi: 10.1128/MRA.01434-19.
2
Evolutionary Histories of Type III Polyketide Synthases in Fungi.
Front Microbiol. 2020 Jan 21;10:3018. doi: 10.3389/fmicb.2019.03018. eCollection 2019.
3
Benwamycins A-G, Trialkyl-Substituted Benzene Derivatives from a Soil-Derived .
J Nat Prod. 2020 Jan 24;83(1):111-117. doi: 10.1021/acs.jnatprod.9b00903. Epub 2020 Jan 6.
4
Evolution and Diversity of Assembly-Line Polyketide Synthases.
Chem Rev. 2019 Dec 26;119(24):12524-12547. doi: 10.1021/acs.chemrev.9b00525. Epub 2019 Dec 15.
5
Loss of Single-Domain Function in a Modular Assembly Line Alters the Size and Shape of a Complex Polyketide.
Angew Chem Int Ed Engl. 2019 Dec 9;58(50):18252-18256. doi: 10.1002/anie.201911315. Epub 2019 Oct 30.
6
How structural subtleties lead to molecular diversity for the type III polyketide synthases.
J Biol Chem. 2019 Oct 11;294(41):15121-15136. doi: 10.1074/jbc.REV119.006129. Epub 2019 Aug 30.
7
Synthesis and Stereochemical Revision of the Aromatic Polyketide NFAT-133.
J Nat Prod. 2019 Jul 26;82(7):1791-1796. doi: 10.1021/acs.jnatprod.8b01063. Epub 2019 Jul 3.
8
antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline.
Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87. doi: 10.1093/nar/gkz310.
9
The secondary metabolite pactamycin with potential for pharmaceutical applications: biosynthesis and regulation.
Appl Microbiol Biotechnol. 2019 Jun;103(11):4337-4345. doi: 10.1007/s00253-019-09831-x. Epub 2019 Apr 25.
10
Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum.
Appl Microbiol Biotechnol. 2018 Dec;102(24):10589-10601. doi: 10.1007/s00253-018-9375-9. Epub 2018 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验