Suppr超能文献

Brugada 综合征患者一级预防临床风险评分模型(BRUGADA-RISK)。

A Primary Prevention Clinical Risk Score Model for Patients With Brugada Syndrome (BRUGADA-RISK).

机构信息

The Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.

Farr Institute of Health Informatics Research, University College London, London, United Kingdom.

出版信息

JACC Clin Electrophysiol. 2021 Feb;7(2):210-222. doi: 10.1016/j.jacep.2020.08.032. Epub 2020 Oct 28.

Abstract

OBJECTIVES

The goal of this study was to develop a risk score model for patients with Brugada syndrome (BrS).

BACKGROUND

Risk stratification in BrS is a significant challenge due to the low event rates and conflicting evidence.

METHODS

A multicenter international cohort of patients with BrS and no previous cardiac arrest was used to evaluate the role of 16 proposed clinical or electrocardiogram (ECG) markers in predicting ventricular arrhythmias (VAs)/sudden cardiac death (SCD) during follow-up. Predictive markers were incorporated into a risk score model, and this model was validated by using out-of-sample cross-validation.

RESULTS

A total of 1,110 patients with BrS from 16 centers in 8 countries were included (mean age 51.8 ± 13.6 years; 71.8% male). Median follow-up was 5.33 years; 114 patients had VA/SCD (10.3%) with an annual event rate of 1.5%. Of the 16 proposed risk factors, probable arrhythmia-related syncope (hazard ratio [HR]: 3.71; p < 0.001), spontaneous type 1 ECG (HR: 3.80; p < 0.001), early repolarization (HR: 3.42; p < 0.001), and a type 1 Brugada ECG pattern in peripheral leads (HR: 2.33; p < 0.001) were associated with a higher risk of VA/SCD. A risk score model incorporating these factors revealed a sensitivity of 71.2% (95% confidence interval: 61.5% to 84.6%) and a specificity of 80.2% (95% confidence interval: 75.7% to 82.3%) in predicting VA/SCD at 5 years. Calibration plots showed a mean prediction error of 1.2%. The model was effectively validated by using out-of-sample cross-validation according to country.

CONCLUSIONS

This multicenter study identified 4 risk factors for VA/SCD in a primary prevention BrS population. A risk score model was generated to quantify risk of VA/SCD in BrS and inform implantable cardioverter-defibrillator prescription.

摘要

目的

本研究旨在为 Brugada 综合征(BrS)患者开发一种风险评分模型。

背景

由于事件发生率低且证据相互矛盾,BrS 的风险分层是一项重大挑战。

方法

使用多中心国际 Brugada 综合征患者队列,这些患者无既往心搏骤停,评估 16 种拟议的临床或心电图(ECG)标志物在预测随访期间室性心律失常(VA)/心源性猝死(SCD)中的作用。预测标志物被纳入风险评分模型,该模型通过使用样本外交叉验证进行验证。

结果

来自 8 个国家 16 个中心的 1110 例 BrS 患者被纳入(平均年龄 51.8 ± 13.6 岁;71.8%为男性)。中位随访时间为 5.33 年;114 例患者发生 VA/SCD(10.3%),年发生率为 1.5%。在 16 种拟议的危险因素中,可能与心律失常相关的晕厥(危险比 [HR]:3.71;p<0.001)、自发 1 型 ECG(HR:3.80;p<0.001)、早期复极(HR:3.42;p<0.001)和外周导联 1 型 Brugada ECG 模式(HR:2.33;p<0.001)与 VA/SCD 风险增加相关。纳入这些因素的风险评分模型显示,在预测 5 年内 VA/SCD 时,敏感性为 71.2%(95%置信区间:61.5%至 84.6%),特异性为 80.2%(95%置信区间:75.7%至 82.3%)。校准图显示平均预测误差为 1.2%。该模型根据国家使用样本外交叉验证进行了有效验证。

结论

这项多中心研究确定了原发性预防 BrS 人群中发生 VA/SCD 的 4 个危险因素。生成了风险评分模型来量化 BrS 中 VA/SCD 的风险,并为植入式心脏复律除颤器的处方提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验