Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales, Australia.
Nat Nanotechnol. 2021 May;16(5):531-537. doi: 10.1038/s41565-021-00852-0. Epub 2021 Feb 18.
Optical tweezers are widely used in materials assembly, characterization, biomechanical force sensing and the in vivo manipulation of cells and organs. The trapping force has primarily been generated through the refractive index mismatch between a trapped object and its surrounding medium. This poses a fundamental challenge for the optical trapping of low-refractive-index nanoscale objects, including nanoparticles and intracellular organelles. Here, we report a technology that employs a resonance effect to enhance the permittivity and polarizability of nanocrystals, leading to enhanced optical trapping forces by orders of magnitude. This effectively bypasses the requirement of refractive index mismatch at the nanoscale. We show that under resonance conditions, highly doping lanthanide ions in NaYF nanocrystals makes the real part of the Clausius-Mossotti factor approach its asymptotic limit, thereby achieving a maximum optical trap stiffness of 0.086 pN μm mW for 23.3-nm-radius low-refractive-index (1.46) nanoparticles, that is, more than 30 times stronger than the reported value for gold nanoparticles of the same size. Our results suggest a new potential of lanthanide doping for the optical control of the refractive index of nanomaterials, developing the optical force tag for the intracellular manipulation of organelles and integrating optical tweezers with temperature sensing and laser cooling capabilities.
光镊被广泛应用于材料组装、特性分析、生物力学力感测以及细胞和器官的活体操作。捕获力主要通过捕获物体与其周围介质之间的折射率失配产生。这对低折射率纳米尺度物体(包括纳米颗粒和细胞内细胞器)的光镊捕获构成了基本挑战。在这里,我们报告了一种利用共振效应来增强纳米晶体介电常数和极化率的技术,从而实现了数量级的光镊力增强。这有效地绕过了纳米尺度上折射率失配的要求。我们表明,在共振条件下,高度掺杂镧系离子的 NaYF 纳米晶体使 Clausius-Mossotti 因子的实部接近其渐近极限,从而实现了 23.3nm 半径低折射率(1.46)纳米颗粒的最大光镊硬度为 0.086 pN μm mW,比相同尺寸的金纳米颗粒的报道值强 30 多倍。我们的结果表明,镧系掺杂在控制纳米材料折射率方面具有新的潜力,为细胞器的细胞内操作开发了光力标签,并将光镊与温度感应和激光冷却功能集成在一起。